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The subtraction method
 Let us consider an n-jet observable in            at NLO accuracy

dσ =

∫
rdΦn+1 +

∫
v dΦn

e
+
e
−

dσ =

∫
(rdΦn+1 − r̃dΦ̃n+1) +

∫
r̃dΦn+1 +

∫
vdΦn

virtual: singularities 
explicit as poles in
1/εn n = 1, 2

real: singularities appear 
after integration over 
unresolved parton

 Add and subtract a local counterterm          with the 
same singularity structure of the real contribution that 
can be integrated analytically over the phase space of the 
unresolved parton

r̃dΦ̃



This term can now be 
integrated numerically

The singularities 
cancel in the sum

The method has been first introduced to compute 
observables to NLO

e
+
e
−

→ 3 jets

 R.K. Ellis, D.A.Ross, A.E.Terrano (1981)

Later it was realized that it can be generalized in a 
process independent manner

Key observation: the soft and collinear limits of the 
QCD matrix element are universal

The counterterm          can be constructed by using 
the kernels that control the singular limits

r̃dΦ̃

General algorithms now available S.Frixione, Z.Kunszt, A. Signer (1995)
S.Catani, M. Seymour (1996)

dσ =

∫
(rdΦn+1 − r̃dΦ̃n+1) +

∫
r̃dΦ̃n+1 +

∫
vdΦn



Anatomy of subtraction at NLO

• C : two partons become collinear

• S : one gluon becomes soft

• SC : two partons become collinear and one of them is 
soft

At NLO IR singularities originate from the following 
configurations:

Let us introduce an operator     such thatE

E(f) = f − f(C) − f(S) − f(SC)
where           is the form of     
in the singular limit 

f(L) f
L

The operator      is not able to subtract all the divergences 
because soft and collinear limits overlap  

E



E f

f − f(C) − f(S) − f(SC)

1) Apply     to    ;
2) Apply     to each of the resulting terms;E

= f − f(C) − f(S) + f(SC)

where we have used commutativity of soft and collinear limits

3) Iterate the procedure until no further term is generated;

The first step gives

The second step gives

To eliminate overlapping divergences we define the following
formal rules (    -prescription)

All the implementations of the subtraction method are based 
on this procedure

E

f − (f(C) − f(C ⊕ S)) − (f(S) − f(S ⊕ C)) − f(SC)



Apply the     prescription to         : the counterterm takes the form:rdΦE

r̃dΦ̃ = r(C)dΦ(C) + r(S)dΦ(S) − r(SC)dΦ(SC)

Frixione-Kunszt-Signer (FKS): partition of phase 
space to have one soft and collinear singularity at 
most and then define dΦn+1 = dΦn(ĩj)dΦ2(i, j, L)

where dΦ2(i, j, L) is an approximation of           in the limit L dΦ2

and      is the on-shell parton obtained from i and jĩj

i

j
ij

k

Catani-Seymour (dipole): partial fractioning through 
eikonal identity

By doing so they are able to combine         ,         and  r(C) r(S) r(SC)

in r(D) = r(S) + r(C) − r(SC)

1

pi ·pjpi ·pk
=

1

pi ·pjpi ·(pj + pk)
+

1

pi ·pkpi ·(pj + pk)

Then introduce exact phase-space parametrization keeping the 
reduced matrix element on shell without approximations



• Double virtual contribution with n resolved partons

• Real-virtual contribution: one parton is unresolved

• Tree-level double real contribution: two partons are 
unresolved  

At NNLO we have to consider:

〈M(1)
n+1|M

(0)
n+1〉 + c.c.

|M(1)
n

|2 + 〈M(2)
n

|M(0)
n

〉 + c.c.

|M(0)
n+2|

2

The singularity structure of the three contributions has been 
basically understood

 ...but a concrete subtraction scheme did not emerge yet

S. Catani (1998);  J.Campbell, N. Glover (1998)
S. Catani, MG (1999); Z.Bern, V. Del Duca, W. Kilgore, C. Schmidt 

(1999), D. Kosower, P. Uwer (1999), S. Catani, MG (2000)

A.Gehrmann- De Ridder, T.Gehrmann, 
E.W.N.Glover (2004)

Results for                          available +        for e
+
e
−

→ 2 jets

 

C
3

F e
+
e
−

→ 3 jets



Is an NNLO general subtraction 
formalism really needed ?

 The number of two-loop amplitudes computed so far is limited             

Sector decomposition could show problems when dealing with 
more complicated processes
A general NNLO subtraction formalism would be interesting 
in itself and would help elucidating the pattern of cancellation 
of infrared singularities             

 But... 

 A new powerful method based on sector decomposition has 
been recently introduced

It already allowed to compute the NNLO corrections to                                       

C. Anastasiou, K.Melnikov, F.Petriello (2004)

e
+
e
−

→ 2 jets  and Higgs production at hadron colliders            

T.Binoth, G.Heirich (2000,2004)
C. Anastasiou, K.Melnikov, F.Petriello (2004)



How to formulate a subtraction 
formalism at NNLO ?

The Catani-Seymour dipole approach appears to be the most 
advanced form of subtraction method to NLO but....   

Can it be extended to NNLO ?
Up to now only partial results available  S.Weinzierl (2002)

D. Kosower (2002)

The price to pay to enforce exact phase space factorization are 
complicated expressions of the momenta appearing in the 
reduced matrix element

Spurious singularities appear when taking collinear limits of 
NLO kernels



Our proposal
S. Frixione, MG (2004)

• Explicit Lorentz invariance

• No exact phase-space factorization but...

• IR singularities combined in universal kernels 
factorizing the same reduced ME

• This is achieved by suitably extending                           
the    - prescription to NNLO

We propose a method that retains some of the features of 
both dipole and FKS approaches:   

E

We have successfully applied it to the calculation 
of the              contribution to  e+

e
−

→ 2 jetsCF TR



• SC : two partons are collinear and a third parton is soft;
• SS :two partons become soft;
• CC[1]: : three partons become collinear;
• CC[2]: two parton pairs become independently collinear;
• SSC: two partons are soft and collinear, or one of them is 

collinear to a third parton;
• SCC[1]: three partons are collinear and one of them is also soft;
• SCC[2]: two parton pairs are collinear and one of the parton is 

soft;
• SSCC[1]: three partons are collinear and two of them are soft;
• SSCC[2]: two parton pairs are collinear and two of them are also 

soft;

J.Campbell, E.W.N. Glover (1998)
S. Catani, MG (1999)

We first consider the double real contribution
The new singular configurations are:



At NNLO there are two distinct topologies that need be 
considered:  

We understand that the singular terms, before being 
combined, have to be manipulated in order to make their 
contribution in the two topologies manifest  

Up to four iterations are necessary to define the counterterm 

Define ENNLO(f) = ENLO(f)

−f(SC) − f(SS) − f(CC) − f(SCC) − f(SSC) − f(SSCC)

EThe claim is that applying the     -prescription to the double real 
contribution we can systematically subtract its singularities



We start by applying the    - prescription to  E rr

Let us focus on e
+
e
−

→ n jets

dσrr =

∫ (
rrdΦn+2 − r̃r

−2dΦ̃
−2
n+2 − r̃r

−1dΦ̃
−1
n+2

)

+

∫
r̃r

−2dΦ̃
−2
n+2

+

∫
r̃r

−1dΦ̃
−1
n+2

Finite: to be 
integrated 
numerically

To be integrated analytically 
over the phase space of 
unresolved partons
Can be integrated over NLO 
phase space but it is still 
divergent because there is 
one unresolved parton

We write the three contributions to the NNLO cross-section as  

dσ =

∫
rrdΦn+2 +

∫
rvdΦn+1 +

∫
vvdΦn

= dσrr + dσrv + dσvv



dσ =

∫ (
rrdΦn+2 − r̃r

−2dΦ̃
−2
n+2 − r̃r

−1dΦ̃
−1
n+2

)
+

∫ (
rv(s)dΦn+1 − r̃v

(s)
dΦ̃n+1

)
+

∫
r̃r

−2dΦ̃
−2
n+2 +

∫
r̃v

(s)
dΦ̃n+1 +

∫
vvdΦn ,

Combine                rv

∫
r̃r

−1dΦ̃
−1
n+2 with                and define:                

rv
(s) = rv +

∫
r̃r

−1dΦ
−1
2

which is now finite for 
as in a NLO calculation                

ε → 0

rv
(s)We can define a subtraction for      as before      

In summary we end up with      

where the phase spaces have to be properly defined and the 
appropriate measurement functions are understood



An application: the          contribution CF TR

e
+
e
−

→ 2 jetsof 
This is certainly a simple example but we find in it many 
of the complications of a NNLO calculation:       

rr

rv

:  CC , SS, CSS, CCSS,  C  singular 
configurations

:  singularities explicit from loop 
and implicit when the gluon 
becomes collinear to    or q q̄



The three-parton kernel K
(3)
q′

1
q̄′

2
q3

According to the     -prescription the counterterm            isE r̃r
−2

r̃r
−2 = rr(CC) + rr(SS) − rr(CC ⊕ SS)

−rr(C ⊕ C) − rr(C ⊕ SS) + rr(C ⊕ C ⊕ SS)

and is controlled by a kernel which is in general a matrix in colour 
space

r̃r
−2 = 〈M(0)

q...an+2
|K(3)

q′

1
q̄′

2
q3
|M(0)

q...an+2
〉

However it turns out that

rr(SS) = rr(C ⊕ SS) rr(CC + SS) = rr(C ⊕ C ⊕ SS)and

K
(3)
q′

1
q̄′

2
q3

=
(8παSµ2ε)2

s2
123

(
KCC

q′

1
q̄′

2
q3

− KC⊕C
q′

1
q̄′

2
q3

)



K
CC
q′

1
q̄′

2
q3

=
1

2
CF TR

s123

s12

[
−

t212,3

s12s123

+
4z3 + (z1 − z2)2

z1 + z2

+(1−2ε)

(
z1 + z2 −

s12

s123

) ]

tij,k ≡ 2
zisjk − zjsik

zi + zj
+

zi − zj

zi + zj
sij

K
C⊕C
q′

1
q̄′

2
q3

=
1

2
CF TR

s123

s12

[
−

t
(S)2

12,3

s12s123
+

4z3 + (z1 − z2)2

z1 + z2
+ (1 − 2ε) (z1 + z2)

]

t
(S)
ij,k ≡ 2

zisjk − zjsik

zi + zj

where

is the function controlling the collinear limit of three partons and

is its form in the limit s12 ! s123

The kernel needed for r̃r
−1 is just: 〈µ|K(2)

q′

1
q̄′

2

|ν〉 =
8παSµ2ε

s12
P̂

µν

qq̄

P̂
µν
qq̄ (z, kT ) = TR

[
−gµν + 4z(1 − z)

k
µ
T kν

T

k2
T

]
where:

S. Catani, MG (1998)



∆n(p1, . . . , pn) ≡

∣
∣
∣
∣
∣
∣
∣
∣

p
2
1 p1 ·p2 ... p1 ·pn

p2 ·p1 p
2
2 ... p2 ·pn

... ... ... ...

pn ·p1 pn ·p2 ... p
2
n

∣
∣
∣
∣
∣
∣
∣
∣

Phase space
Express angles in terms of invariants using Gram determinants          

E. Byckling, K. Kajante (1972)

dΦ2(q; k1, k2) =
Ω(d−2)

4(2π)d−2

(
−

∆3(n, k1, k2)

∆2(n, q)

) d−4

2

×δ (1 − z1 − z2) δ
(
q2

− s12 − k2

1 − k2

2

)
dz1dz2ds12

zi =

ki ·n

q ·n
Introduce arbitrary lightlike vector     with      n

−

∆3(n, k1, k2)

∆2(n, q)
= z1z2q

2
− z1k

2

2 − z2k
2

1with 



with:         

In the case of three massless partons we have:         

dΦ3(q; k1, k2, k3) =
Ω(d−2)Ω(d−3)

32(2π)2d−3

(
∆4(n, k1, k2, k3)

∆2(n, q)

) d−5

2

×δ (1 − z1 − z2 − z3) δ
(
q2

− s12 − s13 − s23

)
dz1dz2dz3ds12ds13ds23

∆4(n, k1, k2, k3)

∆2(n, q)
=

1

4

(
2z1z2s13s23 + 2z1z3s12s23 + 2z2z3s12s13

−z
2

1s
2

23 − z
2

2s
2

13 − z
2

3s
2

12

)

This form is fully symmetric but suppose we want to study a 
strongly ordered double collinear limit

k1

k2

k3 The phase space can be written 
exactly in a 2 x 2 form



dΦ3 =
Ω(d−2)Ω(d−3)

16(2π)2d−3
(s123)

d−4

2 (s12)
d−4

2

(
1 −

s12

s123(1 − z3)

) d−4

2

(z3(1 − z3))
d−4

2

× (ζ2 (1 − ζ2))
d−4

2 (1 − x2)
d−5

2 ds12 dz3 dζ2 dx

s13 = (s123 − s12)(1 − ζ2) +

√
s12

1 − z3

ξ s23 = (s123 − s12)ζ2 −
√

s12

1 − z3

ξ

ξ = 2
√

z3ζ2(1 − ζ2)(s123(1 − z3) − s12) x + z3(2ζ2 − 1)
√

s12

Defining the aximuthal variable     throughx

And the momentum fraction 
of the                     splitting ζ2 = z2/(z1 + z2)

12 → 1 + 2

= dΦ2(3, 12) ⊗ dΦ2(1, 2)

The three-parton phase space can be rewritten as

Remember 
this factor !



We now use these results to properly define the phase spaces 
needed to implement our master subtraction formula

dΦn+2 =
ds123

2π
dΦn(123) dΦ3(1, 2, 3)

Exploit phase space factorization

dΦ̃−2
n+2 =

ds123

2π
dΦn(1̃23) dΦ3(1, 2, 3)

on shell

dΦ̃−1
n+2 =

ds12

2π
dΦn(1̃2) dΦ2(1, 2)

We could define analogously:

But this definition would induce a mismatch with dΦ3(1, 2, 3)

we define: dΦ̃−1
n+2 = dΦn(1̃2)

ds12

2π

(
1 −

s12

smax
12

)
−ε

dΦ2(1, 2)



The integral of the three-parton kernel is:
∫

ds123

2π
K

(3)
q′

1
q̄′

2
q3

dΦ3(1, 2, 3) =
(αS

2π

)2
CF TR

(
smax
123

µ2

)
−2ε 1

6ε

(
1 +

31

6
ε

)
+ O(ε)

Combining the integral of          with      we find

rv
(s)

dΦ3 ≡ rv|TR
dΦ3 +

∑
f

∫
r̃r

−1dΦ̃
−1
4 =

αS

2π

TRnF

ε

∣∣∣M(0)
gqq̄

∣∣∣2 dΦ3

×

{
2

3
−

(
µ

2

smax
12

)ε
e
εγ

Γ(1 − ε)

[
2

3
+

10

9
ε +

(
56

27
−

π
2

9

)
ε
2

+

(
328

81
−

5

27
π2

−
4

3
ζ3

)
ε3

] (
1 −

π2

6
ε2 − 2ε3ζ3

) }
+ O(ε3)

r̃r
−1 rv

which is finite as it must be as               but still has to be 
integrated over the phase space of the gluon

ε → 0

where           is an arbitrary parameters
max

123



The singularity in          can be subtracted using the NLO kernel

K
(2)
qg = −

8πµ
2ε

αS

sqg

∑

k !=q

V
(2)
qg,k T q ·T k

V
(2)
qg,k =

2pq ·pk

(pq + pk)·pg
+ (1 − z)(1 − ε)

with

rv
(s)

The corresponding integrals over                   can be performed to 
the required accuracy and depend on the upper limit of  

dΦ2(q, g)
sqg

We set: sqg ≤ ymax Q2

g

q

q̄

In general the construction of the counterterm         will require the 
knowledge of the soft and collinear limits of one-loop amplitudes

r̃v
(s)

Z.Bern, V. Del Duca, W. Kilgore, C. Schmidt (1999), 
D. Kosower, P. Uwer (1999), S. Catani, MG (2000)

smax

123 = ymaxQ
2and also



Results
We combine the results with the well known double virtual 
contribution T. Matsuura, S.C. Van der Marck, W.L. van Neerven (1989)

The poles correctly cancel out leaving a finite result
We implemented the subtracted contributions in a numerical code
We first checked that the total rate is correctly recovered

R =
∑

q

e2

q

{
1 +

(αS

2π

)
3

2
CF +

(αS

2π

)2

[
−

3

8
C2

F + CF CA

(
123

8
− 11ζ3

)

+CF TRnF

(
−

11

2
+ 4ζ3

) ]
+ O(α3

S
)

}
K.G.Chetyrkin, A.L.Kataev, F.V. Tkachov 

(1979), M.Dine, J.R.Sapirstein (1979), 
W.Celmaster, R.J.Gonsalves (1980)

R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−)

−0.69177



ymax 4-parton 3-parton analytic total pull

0.2 −0.692 ± 0.002 1.4241 ± 0.0004 −1.4236 −0.692 ± 0.002 0.11

0.4 −0.229 ± 0.004 9.8001 ± 0.0003 −10.2610 −0.690 ± 0.004 0.44

0.6 0.074 ± 0.02 12.3440 ± 0.0003 −13.0753 −0.657 ± 0.02 1.74

0.8 0.235 ± 0.005 13.3759 ± 0.0003 −14.2989 −0.688 ± 0.005 0.75

1.0 0.383 ± 0.004 13.8284 ± 0.0003 −14.9005 −0.689 ± 0.004 0.69

The various terms in the subtraction formula separately depend on 
the arbitrary parameter           but their sum is independent on it 
and in good agreement with the known analytic result

ymax

We find for the term proportional to nF

1.7998 ± 0.0016

1.7992 ± 0.0015

ymax = 0.6

ymax = 0.4

In nice agreement with results 
of Anastasiou et al.

ycut = 0.1

We also implemented a measurement function corresponding 
to the JADE algorithm with            



• We have proposed a framework to extend the 
subtraction method  to NNLO

• The  method combines some of the aspects of the 
dipole and FKS approaches:
• Explicit Lorentz invariance
• No exact phase-space factorization
• IR singularities are combined in universal kernels 

factorizing the same reduced matrix element
• We have shown that it works in a simple case: the 

calculation of the             contribution to 
• Although very simple, this example shows some of the 

complications of more involved processes

Conclusions

e
+
e
−

→ 2 jetsCF TR



• To my knowledge, it is the first application where 
process independent subtraction counterterms have 
been constructed and integrated over the corresponding 
phase spaces to achieve the explicit cancellation of IR 
singularities

• A lot of work remains to be done before our proposal 
can give a complete subtraction formalism: further tests 
are in progress in more complicated processes


