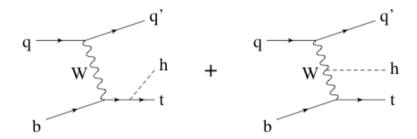

Single-top + Higgs

Fabio Maltoni CERN

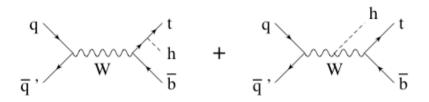

with K. Paul, T. Stelzer, S. Willenbrock

Outline

- Motivations
- Cross sections at hadron colliders
- \bullet t-channel production at the LHC
- Conclusions

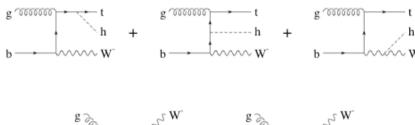
t-channel Production

Consider single top production in the t-channel (spacelike W boson) and add Higgs-strahlung from the W or from the top:

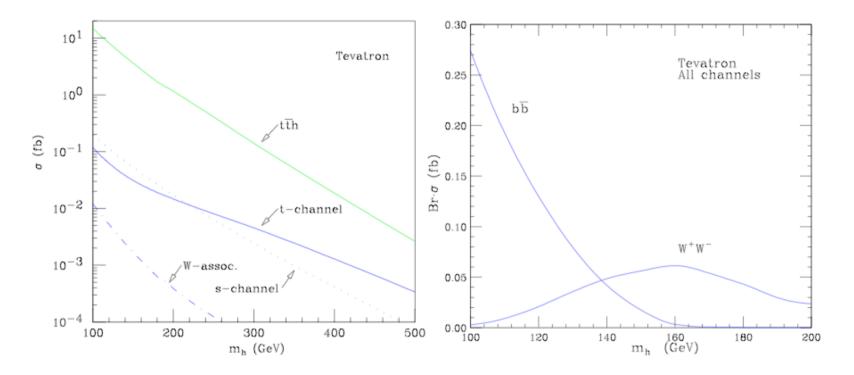


This process with the $h \to \gamma \gamma$ has been discussed by: Diaz-Cruz and Sampayo (1992), Stirling and Summers (1992), Ballestrero and Maina (1993), Bordes and van Eijk (1993). Interesting features:

- Shares similar dynamical features with single top production, such as a forward jet
- $\sigma(t) \simeq 1/3 \ \sigma(t\bar{t}) \stackrel{?}{\Rightarrow} \sigma(th) \simeq 1/3 \ \sigma(t\bar{t}h)$
- The Higgs couples to both the (spacelike) W and the top \Rightarrow study the relative phase of the couplings

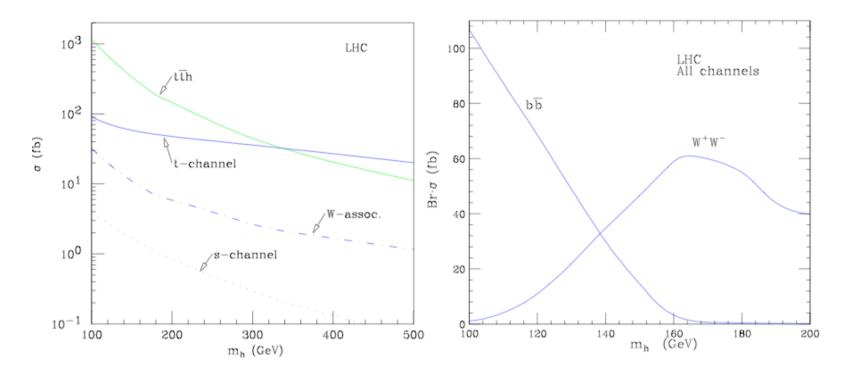

Other channels for single top + Higgs

The s-channel:

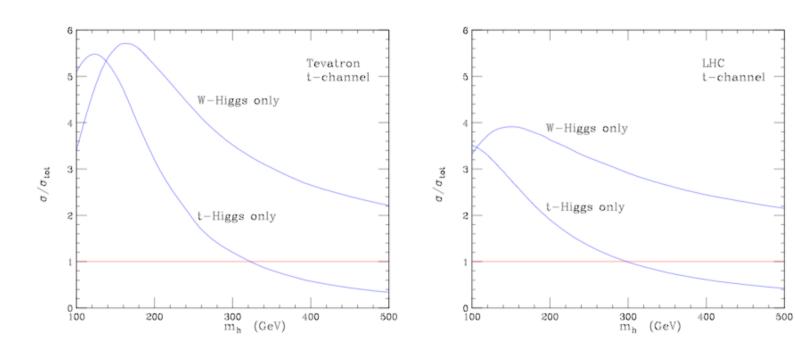

- Higgs couples to a timelike W boson $(q^2 > 0)$
- Cross section is small at pp colliders for single top only
- For an intermediate-mass Higgs, it gives the largest contribution at the Tevatron

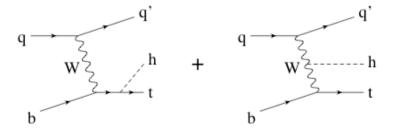
The W-associated channel:

- Higgs couples to an on-shell W boson $(q^2 = M_W)$
- Complicated final state
- Always smaller than the *t*-channel


Single Top + Higgs at the Tevatron

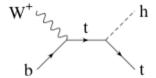
- $p\bar{p}$ @ $\sqrt{s} = 2 \text{ TeV}$
- the s-channel is favoured (valence quarks and anti-quarks)
- s-channel cross section is around 1/50 of $\sigma(t\bar{t}h)$ for $m_h=115~{\rm GeV}$


Conclusion: cross section far too small to have any events produced in Run II


Single top + Higgs production at the LHC

- $pp @ \sqrt{s} = 14 \text{ TeV}$
- the t-channel gives the largest contribution, about one order of magnitude smaller than $t\bar{t}h$ (note the different fall off, though)
- for $m_h < 120$ GeV we expect a cross section of about 100 femtobarns \Rightarrow no hope for $h \to \gamma \gamma$, but what about $h \to b\bar{b}$?

Interference in the t-channel

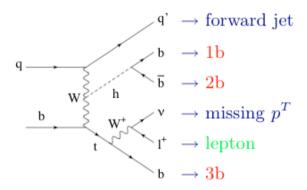


The interference is destructive and accounts for the smallness of the cross section

Unitarity cancellations in the t-channel

The largest contribution from the t-channel comes from the emission of longitudinal W's. Using the effective-W approximation:

For $s \sim -t \sim -u \sim E^2 \gg m_h^2, m_W^2, m_t^2$, each of the two diagrams behaves like


$$\mathcal{A} \sim g^2 \frac{m_t E}{m_W^2}$$

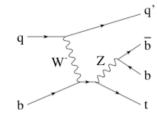
This entails a violation of unitarity at a scale $\Lambda \simeq m_W^2/m_t g^2$.

The divergent terms cancel if the following relation between the Higgs couplings holds:

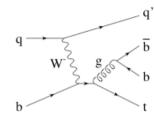
$$\frac{g_{W^-W^+h}}{2} m_t + g_{t\bar{t}h} m_W = 0.$$

t-channel production with $h \to b\bar{b}$ at the LHC

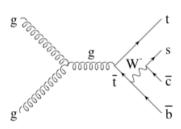
To simulate the detector acceptance we have used:

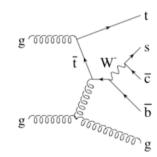

cut	$p_b^T >$	$p_{\ell,\nu}^T >$	$p_j^T >$	$ \eta_{b,\ell} <$	$ \eta_j <$	$\Delta R_{ij} >$	σ_{3b}
value	$15~{ m GeV}$	$20~{ m GeV}$	$30~{\rm GeV}$	2.5	5	0.4	4.0 fb

Cuts applied to the t-channel signal, for $m_h=115~{\rm GeV}.$

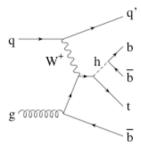

Branching ratios ${\rm Br}(h\to b\bar b)$ as well as ${\rm Br}(W\to \ell\nu)$ are included.

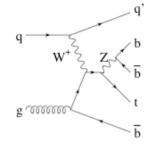
Detector efficiences are not included.


3 b's


 $t\boldsymbol{Z}$: irreducible bkg

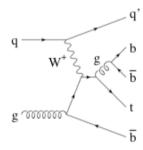
 $tb\bar{b}$: irreducible bkg

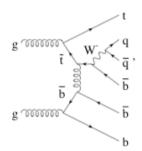

 $t\bar{t}$: reducible bkg



 $t\bar{t}j$: reducible bkg

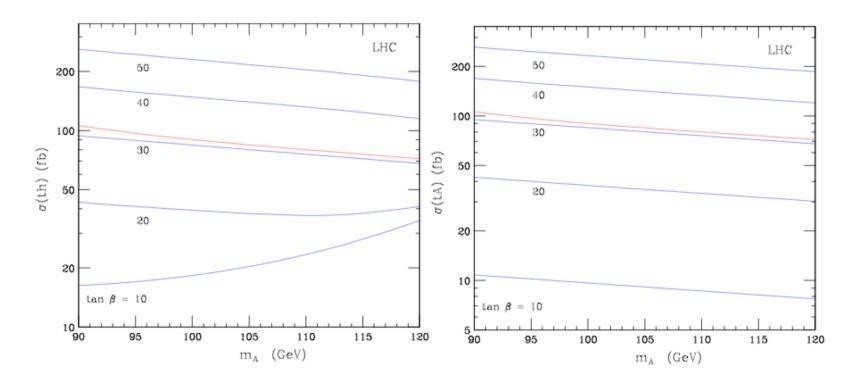
		3b-tag	g (low l	uminosity)	
	Signal	tZ	$tbar{b}$	$t ar{t}$	$t\bar{t}j$
Detector cuts	0.80	2.1	4.1	810	100
$ m_{b\bar{b}} - m_h < 22 \text{ GeV}$	0.75	0.83	0.54	450	38
$ \eta_j > 2, p_j^T > 50 \text{ GeV}$	0.39	0.44	0.26	13	8.0
$m_{b\bar{b}j} > 250~{\rm GeV}$	0.35	0.35	0.25	-	7.4
Events with 30 fb ⁻¹	10	10	7	-	220


4 b's



th: Signal

 $t\boldsymbol{Z}$: irreducible bkg



 $tb\bar{b}$: irreducible bkg

 $tb\bar{b}$: reducible bkg

	4b-tag (low luminosity)							
	Signal	tZ(b)	$tb\bar{b}(b)$	$t \overline{t} b \overline{b}$	$t\bar{t}b\bar{b}$ (mistag)	$t\bar{t}j$		
Detector cuts	0.22	0.42	1.5	5.8	3.1	9.0		
$ m_{b\bar{b}} - m_h < 22 \text{ GeV}$	0.21	0.17	0.61	2.6	2.3	6.3		
$ \eta_j >2$	0.15	0.11	0.41	0.17	0.18	2.4		
$\min m_{b\bar{b}} > 90 \mathrm{GeV}$	0.1	0.065	0.08	0.053	0.078	-		
Events with 30 fb^{-1}	3.0	1.9	2.5	1.6	2.3	-		

Single Top + SUSY Higgs production at the LHC

- $M_{\rm SUSY} = 1$ TeV, maximal stop mixing.
- The red line is the cross section for a standard model Higgs.
- The enhancement of the cross section is modest: for $m_h = m_A = 115$ GeV and $\tan \beta \simeq 50 \Rightarrow \sigma(th) + \sigma(tA) = 5 \sigma(th_{\rm SM})$

Unitarity cancellations in the t-channel in the 2HDM (type II)

For $s \sim -t \sim -u \sim E^2 \gg m_h^2, m_{H^+}, m_W^2, m_t^2$, each diagram behaves like

$$A_i \sim g^2 \frac{m_f E}{m_W^2}$$
, with $f = t, b$.

This entails a violation of unitarity at a scale $\Lambda \simeq m_W^2/m_f g^2$. The divergent terms cancel if the following relations hold true:

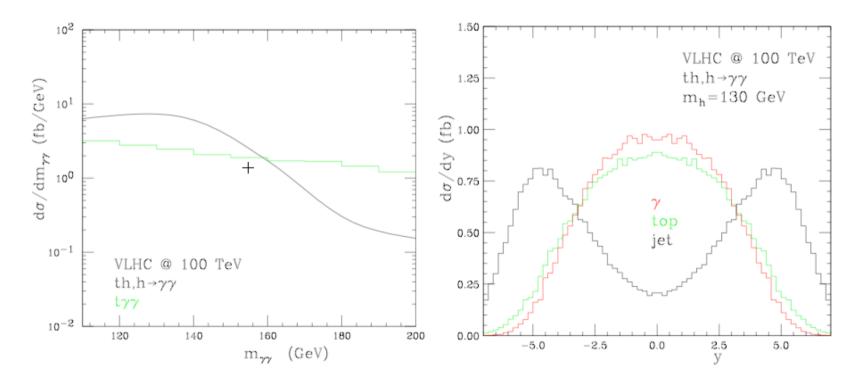
$$\frac{g_{W^-W^+h}}{2} m_b + g_{W^-H^+h} \tan\beta m_b + g_{b\bar{b}h} m_W = 0,$$

$$-\frac{g_{W^-W^+h}}{2} m_t + g_{W^-H^+h} \cot\beta m_t - g_{t\bar{t}h} m_W = 0.$$

$$g_{W^-W^+h} = g \sin(\beta - \alpha),$$

$$g_{W^-H^+h} = -\frac{g}{2} \cos(\beta - \alpha),$$

$$g_{t\bar{t}h} = -\frac{gm_t}{2m_W} \frac{\cos\alpha}{\sin\beta},$$


$$g_{b\bar{b}h} = \frac{gm_b}{2m_W} \frac{\sin\alpha}{\cos\beta}.$$

True in the 2HDM also!

Summary

- We have presented the cross sections for production of single top in association with a Higgs at hadron colliders.
- For a light Higgs, the cross sections are smaller than one would expect from comparison with $t\bar{t}$ and $t\bar{t}h$.
- For the leading contribution, the t-channel production, this is due to unitarity ⇒ the same holds in more general Higgs sectors.
- t-channel production with the Higgs decaying into $b\bar{b}$, gives a fair amount of signal events at the LHC, but backgrounds are severe.
- Moderate enhancements of the signal are found for large $\tan \beta$ and $m_A < 120$ GeV in the SUSY Higgs sector.
- Preliminaries studies at the VLHC in the channel $h\to\gamma\gamma$ and $h\to W^+W^-$ are encouraging.

Single Top + $h \rightarrow \gamma \gamma$ at the VLHC

- $\sigma(th) = 3.2$ pb, for $\sqrt{s} = 100$ TeV and $m_h = 130$.
- $h \to \gamma \gamma$ offers a clean signature.
- $h \to W^+W^-$ might be the best shot.

Conclusion: more studies are needed!!