Status Report of the Higgs & SM Working Group Experimental Part I

Les Houches, 3 May 2005

Volker Drollinger

Dipartimento di Fisica "Galileo Galilei", Università di Padova

- ♦ Introduction
- Activities
 - ▶ Generators: LO, NLO, tuning, uncertainties
 - \triangleright SM: top, W, Z, jets
 - ▶ PDF: improvements, use of W and Z
- Overview

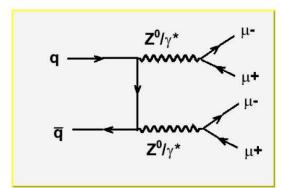
Status LHC

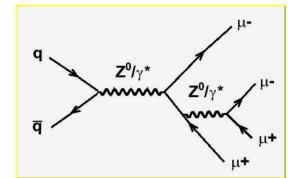

- ♦ reality: the construction of the LHC has started
 - ▷ installation of dipole magnets (in total 1232 + other ...)

Status ATLAS

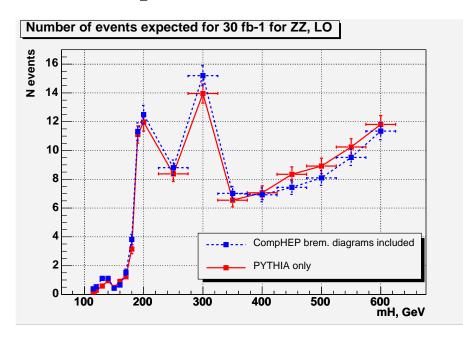
- ♦ construction of the ATLAS detector underground
 - be two (out of eight parts of the barrel toroid)

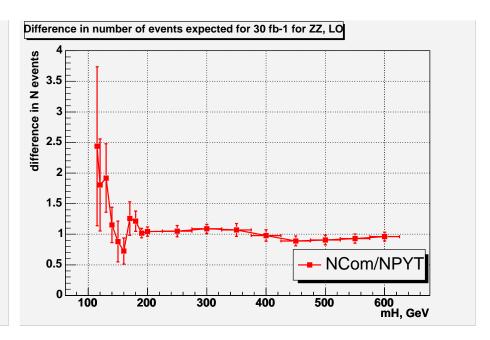
Status CMS

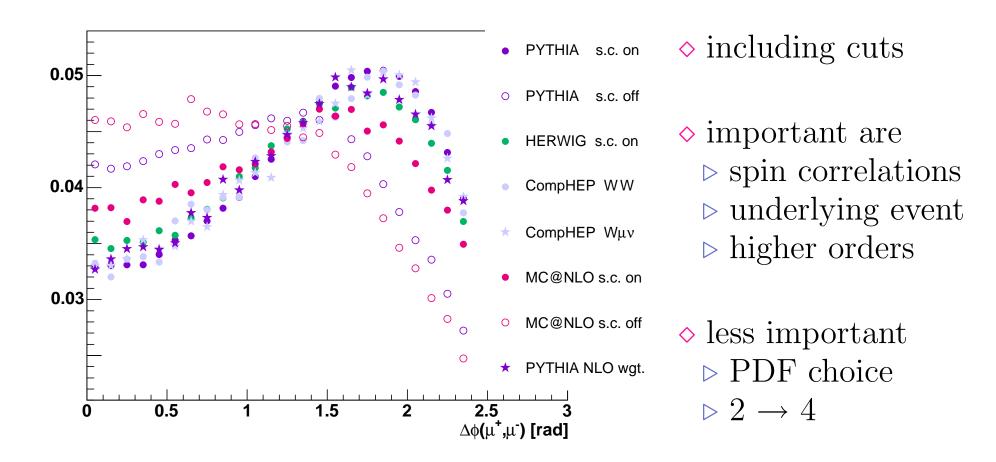

- ♦ magnetic coil of CMS
- ♦ some CMS events:
 - ▶ magnet test (late 2005)
 - ▶ P-TDR (early 2006)
 - ⊳ go underground (2006)
 - \triangleright commissioning (2006/2007)
 - ▶ first data (2007)
- ♦ hardware is getting ready
 - have to be prepared for the first data
 - ▶ we need your help


Generators: Motivation

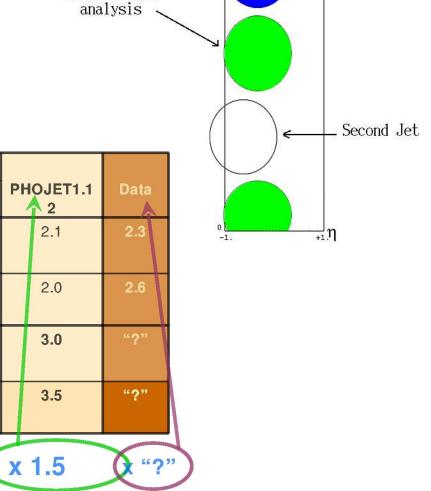
- ♦ How do we understand the data?
 - ▶ need to understand signals and corresponding backgrounds
 - ▶ important for measurements and searches (uncertainties)
 - ▶ in many cases simulation (+ detector simulation)
- ♦ How do we model a process?
 - ▶ if possible directly from data
 - > still needs to be checked with simulation
 - or from simulations (often the only possibility)
 - ▶ need good description (including tuning)
- ♦ Test theoretical predictions
 - ▶ new physics?


MC Studies I: ZZ Pairs


♦ LO diagrams:


♦ after pre-selection

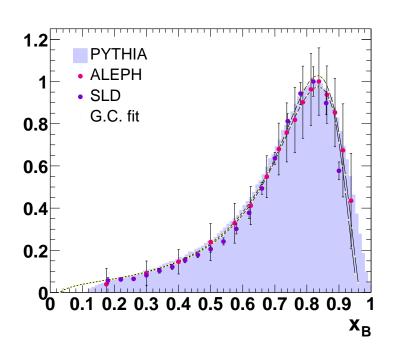
♦ kinematics is different as well ▶ more in MC session

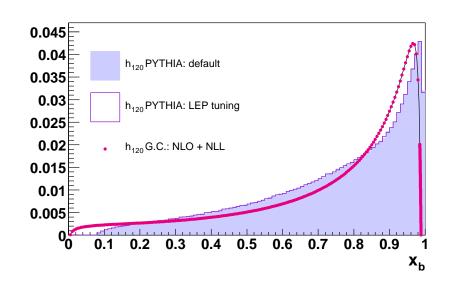

MC Studies II: W⁺W⁻ Pairs

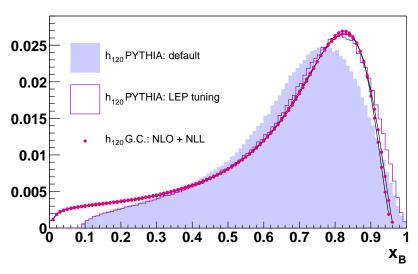
- \diamond new: gg \rightarrow W⁺W⁻ gives additional $\approx 30\%$ contribution
- ♦ probably more in MC session and MC@NLO tutorial

MC Tuning I: underlying Event

- study typical regions
- ♦ tune MCs to CDF data
- ♦ extrapolate to the LHC
 - ▶ more in MC tuning session


90° cones/used in this

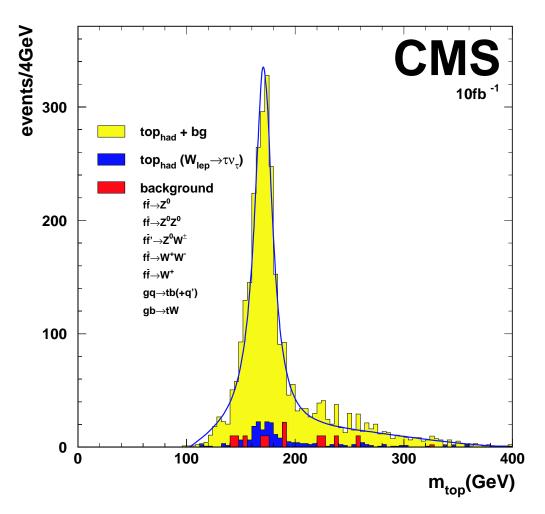

Lead Jet


		JIMMY4.1		PYTHIA6.214				
_	Measurement	Tuning A	Tuning B	ATLAS /	CDF Tuning	PHOJET1.1		Data 🛦
Tevatron	<n<sub>chg></n<sub>	2.4	2.3	2.4	2.3		2.1	2.3
	pT _{ljet} > 10 GeV							
	<pt<sub>sum></pt<sub>	2.5	2.1	2.3	2.6		2.0	2.6
	pT _{ljet} > 10 GeV							
ГНС	<n<sub>chg></n<sub>	12.2	9.2	6.6	4.7		3.0	"?"
	pT _{ljet} > 10 GeV							
	<pt<sub>sum></pt<sub>	11.5	8.5	7.5	6.5		3.5	"?"
	pT _{ljet} > 10 GeV							
X5 X4 (X3 X2) (Y15 (*2"								

MC Tuning II: $h \rightarrow b\bar{b}$ Fragmentation

- \diamond match $Z \rightarrow b\bar{b}$ data
- \diamond apply tuned parms. to $h \rightarrow b\bar{b}$ at the LHC

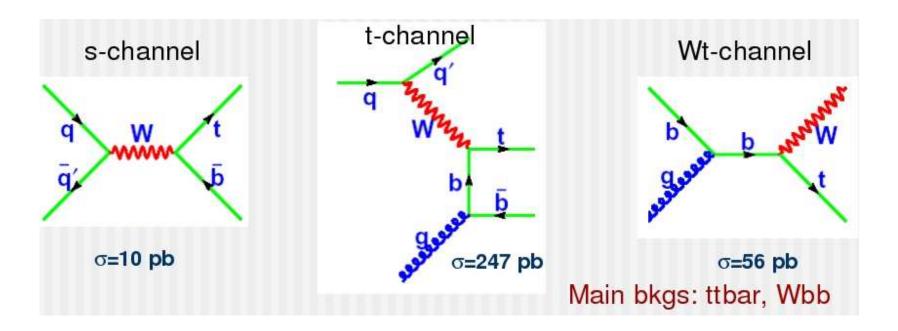
♦ compare with NLO predictions > more in MC tuning session


Standard Model: Motivation

- ♦ Why is physics of the SM (still) important?
 - ▶ it will be the first physics at the LHC
 - ▶ useful for understanding the data
 - be do the same physics at higher energies
 - ▶ higher precision is still possible
 - ▶ new processes (e.g. single top)
 - by check consistency of the SM
 - ▶ look for deviations
- No new physics without a good understanding the SM backgrounds

W and Z Bosons

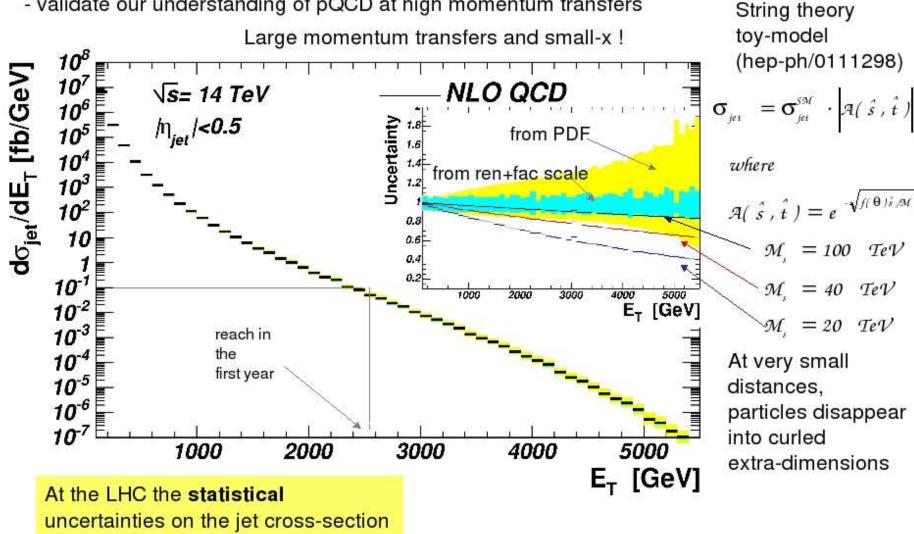
- unlimited statistics: cross sections are several nb
 - ▶ even with leptons in the final state
- useful for
 - b detector calibration and alignment
 - ▶ luminosity measurement, PDFs (later)
- important background processes
- electroweak physics
 - ▶ precision measurement of the W mass and width
 - ▶ anomalous couplings
- ♦ WW, WZ and ZZ pair production
 - ▶ smaller cross sections: 120 pb, 50 pb and 16 pb
 - ▶ typically more dangerous as background (especially Higgs)


Top Physics I: Top Pairs

- \diamond 8M t $\bar{\rm t}$ events per 10 fb⁻¹
 - ▶ top mass better than 1 GeV

- want to go beyond the TeVatron
- ♦ long list of analyses
 - ⊳ mass, width
 - > cross section
 - $\triangleright BR(t \rightarrow Wb)$
 - ▶ spin correlations
 - > rare decays
- detailed understanding of many aspects is essential
 - ▶ top session

Top Physics II: Single Top


- ♦ single top not observed yet (just limits)
 - ▶ more difficult than pairs of top quarks
- \diamond direct measurement of V_{tb} ($\sigma \sim |V_{tb}^2|$)
- ♦ study polarization (weak interaction), new physics, ...
- ♦ important background for many other searches

Jet physics: Single Inclusive Cross-section

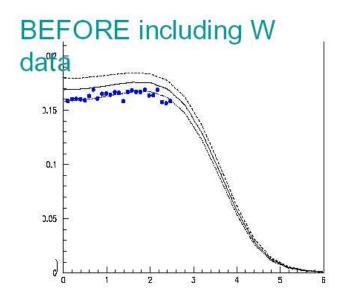
test of pQCD in an energy regime never probed!

will be small.

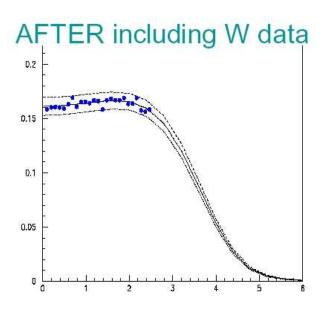
validate our understanding of pQCD at high momentum transfers

Main systematic errors?

Rather general


Theory uncertainty?

PDFs: Motivation


- ♦ PDFs are an important ingredient at hadron colliders
 - ▶ cross sections: measurements and background predictions
 - \triangleright event properties: \hat{s} , boost, ...
- improvements with time
 - > now
 - ▶ after HERA and TeVatron
 - ▶ including data of one year of LHC
- ♦ measure parton luminosity from SM processes
 - ▶ good candidates are W and Z production (see SM part)
 - ▶ expect accuracy of about 1%

Reduce PDF Uncertainties with W Bosons

♦ include W rapidity distributions in global PDF fits

W+ to lepton rapidity spectrum data generated with CTEQ6.1 PDF compared to predictions from ZEUS PDF

W+ to lepton rapidity spectrum data generated with CTEQ6.1 PDF compared to predictions from ZEUS PDF AFTER these data are included in the fit

 \diamond done with ATLFAST and ℓ^{\pm} selection \triangleright more in PDF session

Overview: MC

- ♦ background studies: BG predictions, BG uncertainties
 - ▷ experimental part: M. Duehrssen, J. Huston,M. Schumacher, ...
- ♦ MC tuning: underlying event, fragmentation
 - ▶ experimental part: C. Buttar, V. Drollinger, A. Moraes, ...
- ♦ higher orders: MC@NLO, HO-weighting
 - ▶ experimental part: G. Davatz, M. Dittmar, V. Drollinger,
 A. Drozdetskiy, B. Mellado, A. Oh, B. Quayle, S. L. Wu, ...

Overview: SM

- ♦ W and Z (single and pairs)
 - experimental part: A. Cooper-Sarkar, M. Duehrssen,P. Giraud, S. Hassani, A. Schmidt, ...
- ♦ top (single and pairs)
 - ▶ experimental part: J. D'Hondt, A. Giammanco, J. Heyninck, I. van Vulpen, ...
- ♦ jets, W+jets, Z+jets, jet veto
 - experimental part: R. Mazini, A. Nikitenko, S. Odaka, A. Schmidt, ...

Overview: PDF

- evolution (HERA, TeVatron, LHC)
 - ▶ experimental part: J. Huston, J. Huston, ...
- parton luminosity
 - ▶ experimental part: S. Ferrag, P. Gras, ...
- ♦ heavy flavours
 - ▶ experimental part: T. Petersen, T. Petersen, ...
- uncertainties
 - ▷ experimental part: C. Buttar, A. Cooper-Sarkar,A. Moraes, ...

Overview of Activities

- ♦ most experimental Higgs activities can be accommodated in
 - ▶ generators (predictions, uncertainties)
 - ▶ SM (backgrounds)
- ♦ topics of exp. SMH part II are not listed in this talk
- something/somebody forgotten? complain now!
- ♦ additional activities are encouraged ...

Work a lot and enjoy the Mountains!

