Computing and analysis experience in BaBar

Francesco Fabozzi *INFN-Napoli*

III Workshop italiano sulla Fisica di Atlas e CMS Bari, 20 – 22 Ottobre 2005

The BaBar experiment @ SLAC

- Study of CP violation in B meson decays
 - B mesons produced at PEP-II B-factory
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ decays
 - About 1M BB / fb⁻¹

The BaBar experiment @ SLAC

- The physics goals of BaBar require high statistics
 - High luminosity of the machine

High efficiency in data acquisition

 The computing model (CM) has to be flexible enough to scale with the huge amount of available data

Requirements of the CM

- Increase physics productivity
 - Data available in a short amount of time in a format suitable for physics analysis
 - New/updated physics results soon after the data are collected
 - Example: analysis model
- Avoid overload of CPU and disks resources
 - Optimized use of resources
 - Distributed computing
 - Use all the possible resources available in the collaboration
 - Example: simulation production

The Computing Model 2

- The present computing model (CM2) has proven enough flexibility to scale with the luminosity ramp-up
 - Adopted after the experience of the first years of data taking
 - The previous computing model (CM1) was not able to scale with luminosity
- The CM2 was the results of a huge effort within the collaboration
 - Developed in ~ 1 year (2003)

The event store is organized in different components

- "Micro" are a subset of "Mini"
 - No separation between data for physics analysis and reco data for detector studies
 - Changes in reconstruction reflect directly into analysis
 - User can specify different levels of data access when running on the same collection
- Persistency of composite candidates
 - Save CPU time when doing analysis iteration
- Addition of user-defined data
 - Store physics variables needed in the analysis

From reconstructed data to physics results

- Centralized data reduction ("skimming")
 - Reduced collections to run user analysis code
 - Possibility to store particle candidates and analysis variables in the output collections
 - Save computing time when re-running
- No need of massive ntuples productions
 - Users can produce their own sub-skims
 - Access to the experiment software
 - Interactive access from ROOT of the collections
 - ROOT I/O based event store
 - Can be exported to small sites for the final analysis

Simulation Production (SP)

- Distributed computing effort
 - More than 20 centers contribute to MC production
 - Almost 2000 CPU
 - Equally distributed between USA and Europe

- Typical production cycle
 - few billion events in ~1 year
 - almost 100 TB of data
 - management of ~1 M jobs on Linux nodes

Simulation Production (SP)

- Centralized management of production (requests, job assignement and archiving)
 - Central production database at SLAC
- Jobs require in each site:
 - a specific release of BaBar software
 - Configuration and Condition database (Objectivity)
 - Detector noise info (xrootd server)
- Set of tools (= perl scripts) for jobs management (ProdTools)
 - Interface between central production database and external resources
 - Flexibile (heterogeneous resources)
 - Robust and self-recovering system (reduce human effort)
 - Low failure rate (below 1% with new event store)
- Transfer back to SLAC of produced data for archiving
 - On average 200GB/day transfer
 - · Dedicated file server

SPGrid-Italia

- Simulation Production is a natural candidate for a Grid-based setup
 - Big effort in Italy to gridify BaBar software using LCG middleware
- Resources:
 - ~ 400 shared CPU
 - Virtually all Grid-IT resources
 - UI in Ferrara with ProdTools installed
 - BaBar RB in Ferrara
 - AMS server (Objy DB)
 and xrootd server
 installed in Ferrara,
 Napoli, Padova
 - Non-gridified, accessed via WAN

SPGrid-Italia

SPGrid-Italia scheme

SP-Grid status

- Starting from June, official SP8 and SP6 Italian production is performed also on the Grid
 - Main limitation in resource usage due to Objectivity condition database (max 70 concurrent access to DB for optimal performances) and use of WAN for access
 - Event production rate ~ 2M events / week
 - Gridifications of BaBar resources at CNAF T1 is planned in the next few weeks ⇒ relevant increase of available resources for productions
- SPGrid efforts also in UK
 - Part of UK SP resources have been gridified
 - Common approach with Italian SPGrid
- SPGrid will start soon in Germany
- Also plannings in US and Canada
 - Planned use of GridX1 resources in Canada for production
 - Planned use of Open Grid Science for US production