

Misure che si possano fare a 'bassa' luminosita', con statistica limitata e con una conoscenza incompleta del rivelatore:

- Minimum bias/Underlying event
- Misura delle PDF dall'analisi del W (ulteriori commenti)

C. Gemme - A.Ghezzi

Why studying Minimum Bias and Underlying Event

- Essentially all physics at LHC are connected to the interactions of quarks and gluons (small & large transferred momentum).
 - Hard processes (high-pT): well described by perturbative QCD
 - **Soft interactions (low-pT)**: require non-perturbative phenomenological models (strong coupling constant, $\alpha_s(Q^2)$, saturation effects,...)

Minimum bias and the underlying event is dominated by "soft" partonic interactions.

- Why should we be interested?
 - Physics: improve our understanding of QCD effects, multiple interactions (parton, Pomeron, etc.), total cross-section,...
 - Experiments: occupancy, pile-up, backgrounds,...

Early measurements with Min Bias data

- Large uncertainties in prediction at LHC energy
- Obvious first measurements with min-bias data are
 - \circ dN_{ch}/d η , dN_{ch}/d p_T
 - o dNch/d η at η = 0 requires only several thousand events and it is a robust measurement, not dependent on full ID reconstruction.

Charged particle density at $\eta = 0$

Large uncertainty in track densities!

Multiple interaction model in PHOJET predicts a In(s) rise in energy dependence. PYTHIA suggests a rise dominated by the In²(s) term. Only need central inner tracker and a few thousand pp events

Charged particle densities

Generated vs reconstructed tracks (1000 events):

Full inner detector track reconstruction (InDetRecExample)

Only a small fraction of tracks reconstructed:

- Limited rapidity coverage
- Can only reconstruct track p_T with good efficiency down to ~500 MeV, and most particles in MB events have p_T
 <500 MeV

During commissioning phase

- O With commissioning in mind, interesting to compare measurements of $dN_{ch}/d\eta$ for different ID subsystems.
- For example, here is a comparison of "SCT only" with "Pix+SCT+TRT"
 - In the central rapidity region there is little difference in number of tracks reconstructed.
- 180
 160
 dN_{ch}/dη
 140
 120
 100
 80
 60
 40
 20
 PIXEL+SCT+TRT
 0
 3
 1

- One way to reconstruct tracks down to lower p_T 's would be to take some data with a reduced solenoid field (or even zero, don't need track p_T for $dN_{ch}/d\eta$)
- O Probably better to look at reduced field scenarios (eg 1 T), so that we can get dN_{ch}/dp_T measurement with same data.

The Underlying Event in jet physics

- The underlying event is defined as everything in the collision except the hard process.
- It is not a minimum bias event!
- The underlying event has **hard** (multiple "semi-hard" parton scatterings, ISR and FSR) and **soft** components (mainly beam-beam remnants).

 $\Delta \phi = \phi - \phi_{jet}$ azimuthal angle between charged part and the leading charged jet

LHC predictions: pp collisions at √s = 14 TeV

Charged particles:

 $p_t>0.5$ GeV and $|\eta|<1$

Cone jet finder:

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.7$$

UE particles come from region transverse to the leading jet.

Triggering considerations

Min-bias trigger

- Scintillators mounted on front face of LAr endcap cryostat: 20cm < R < 130cm
- Use during early running when luminosity very low
- Need to study triggering efficiency etc.
- Use random trigger when luminosity above 10³² cm-² s-¹?

II. Jet trigger

Selecting jet events: low luminosity

Trigger (LVL1): single jet, E_Tjet >200 GeV

$$\sigma_{jet}$$
~ 70nb \rightarrow ~10° events / 20 fb⁻¹ \rightarrow ~100 events / s

Few hours of data taking (low luminosity) should provide enough statistics!

It would be certainly interesting to lower the jet trigger E_T threshold during commissioning.

Underlying event

 On fully simulated jet samples (60K events) compare reconstructed and generated multiplicity.

Select jet events: Select UE:

Njets > 1 | η track | < 2.5, | η jet| < 2.5 | pTtrack > 1.0 GeV/c |ETjet > 10 GeV | $\Delta \phi$ | < 120^{0}

- Good agreement reconstructed/generated UE
- Early measurements of jet events can measure UE and allow tuning of MC models (100 events/s -> few hours)

UE: Triggering considerations

Jet trigger

Selecting jet events: low luminosity

Trigger (LVL1): single jet, E_Tjet >200 GeV

$$\sigma_{jet}$$
~ 70nb \rightarrow ~10° events / 20 fb⁻¹ \rightarrow ~100 events / s

Few hours of data taking (low luminosity) should provide enough statistics!

It would be certainly interesting to lower the jet trigger E_T threshold during commissioning.

PDFs determination using W bosons

- Measurement of W → lepton rapidity distribution can increase our knowledge of the PDFs useful for many other measurements.
 - W->e Rapidity distributions at GEN and DET Level To Discriminate
 PDF Sets
 - W->e Asymmetry and Ratio at GEN and DET Level To possibly Minimise PDF Errors (under investigation)
- How accurate we need to be?
 - Sensibility of the lepton pseudorapidity distributions to the PDFs
 - Detector level distributions
 - Systematic uncertainties: first study on misidentification but more sources need studies (detector misalignments and efficiency, backgrounds...)

'W⁻ -> e⁻ η Distributions at *Generator Level*

ATLAS detector simulation (AtlFast)

- Uncertainty in PDFs transferred to sizeable variation in rapidity distribution of electrons
- Limited by systematic uncertainties

To discriminate between conventional PDF sets we need to achieve an accuracy ~3% on rapidity distributions.

Error boxes:
The full PDF
Uncertainties

CTEQ61 (MC@NLO)

MRST02 (MC@NLO)
ZEUS02 (MC@NLO)

MRST03 (Herwig+k-Factors

Stat ~6 hours at low Lumi.

W⁺⁻ -> e⁺⁻ Full Simulation: *Detector and Generator levels Comparison*

67K fully simulated events

Signal Selection Efficiency (DET-AfterCuts / GEN-AfterCuts)

W+ -> e+
$$|\eta|$$
 <1 : 0.94 +- 0.03

W+ -> e+
$$|\eta|$$
 >1 : 0.84 +- 0.02

W- -> e-
$$|\eta|$$
 <1 : 0.97 +- 0.03

W- -> e-
$$|\eta|$$
 >1 : 0.85 +- 0.02

Back up for MB and UE

Triggering considerations

Min-bias trigger

- Scintillators mounted on front face of LAr endcap cryostat: 20cm < R < 130cm
- Use during early running when luminosity very low
- Need to study triggering efficiency etc.
- Use random trigger when luminosity above 10³² cm-² s-¹?

Triggering considerations

Min-bias trigger

- Scintillators mounted on front face of LAr endcap cryostat: 20cm < R < 130cm
- Use during early running when luminosity very low
- Need to study triggering efficiency etc.
- Use random trigger when luminosity above 10³² cm-² s-¹?

II. Jet trigger

Selecting jet events: low luminosity

Trigger (LVL1): single jet, E_Tjet >200 GeV

$$\sigma_{jet}$$
~ 70nb \rightarrow ~10° events / 20 fb⁻¹ \rightarrow ~100 events / s

Few hours of data taking (low luminosity) should provide enough statistics!

It would be certainly interesting to lower the jet trigger E_T threshold during commissioning.

UE: Reconstructed jet events

- Jet samples used for this analysis (reconstructed with 10.0.1):
 - Arr J1 J8: QCD jets in p_T bins (17 35GeV, 35 70GeV, 70 140 GeV, 140 280GeV, 280 560GeV, 560 1120GeV, 1120 2240GeV and p_T > 2240GeV);
 - Available from:

/castor/cern.ch/grid/atlas/datafiles/rome/recov10/ http://phyweb.lbl.gov/AOD/10.0.1/

Number of events used: J1 – J5: 40K events; J6, J7 and J8: 20K events.

UE: MC event generator jet samples

2) Selecting the underlying event:

$$N_{jets} > 1,$$

 $|\eta_{jet}| < 2.5,$
 $E_{T}^{jet} > 10 \text{ GeV},$

$$\begin{array}{c|c} \mid \eta_{track} \mid < 2.5, \\ p_{T}^{track} > 1.0 \text{ GeV/c} \end{array}$$

UE: MC event generator vs reconstructed jet samples

Back up for PDFs from Ws and Zs

Can we use *Herwig & K-Factors* to simulate NLO? – seems good enough for rapidity distributions

Events generated using CTEQ61

Study the effect of including the W Rapidity distributions in global PDF Fits by how much can we reduce the PDF errors?

Generate data with CTEQ6.1 PDF, pass through ATLFAST detector simulation and then include this pseudo-data in the global ZEUS PDF fit.

Central value of prediction shifts and uncertainty is reduced

W⁺ to lepton rapidity spectrum data generated with CTEQ6.1 PDF compared to *predictions* from ZEUS PDF

~1day of data-taking at low Lumi

W⁺ to lepton rapidity spectrum data generated with CTEQ6.1 PDF compared to *predictions* from ZEUS PDF AFTER these data are included in the fit

Specifically the low-x gluon shape parameter λ , $xg(x) = x^{-\lambda}$, was $\lambda = -.187 \pm .046$ for the ZEUS PDF before including this pseudo-data. It becomes $\lambda = -.155 \pm .030$ after including the pseudo-data

Event Selection Criteria for W⁺⁻ ->l⁺⁻ v_1

(TDR selection cuts)

• Electrons: $|\eta| < 2.4$

Pt > 25 GeV

- Missing Et > 25 GeV
- ■To reject QCD bkg & high Pt W and Z due to I.S.R.:

No reconstructed jets in the event with Pt > 30 GeV

Recoil on transverse plane should satisfy $|\overline{\mathbf{u}}| < 20 \text{ GeV}$

Background to W⁺⁻ -> $e^{+-}\nu_e$ with ATLFAST

Background Generation:

■ 1M W -> τν (-> evv) events with HERWIG + CTEQ5L

- 1M Z -> $\tau^+\tau^-$ (-> $e^+vv + e^-vv$) events with HERWIG + CTEQ5L
- 1M Z -> e⁺e⁻ events with HERWIG + CTEQ5L
- events with HERWIG + CTEQ5L:

 IPROC=1500
 all 2 -> 2 processes involving q,q,g

 Stat too little!!
- → Also 1M Signal events: W -> eV with HERWIG + CTEQ6.1

W⁺⁻ -> e⁺⁻ Full Simulation Generator Level for W's

$$R_{\pm}(y_W) \equiv \frac{d\sigma/dy_W(W^-)}{d\sigma/dy_W(W+)}$$

$$A(y_W) \equiv \frac{d\sigma/dy_W(W^+) - d\sigma/dy_W(W^-)}{d\sigma/dy_W(W^+) + d\sigma/dy_W(W^-)}$$

W⁺⁻ -> e⁺⁻ Full Simulation Generator level for e+ and e-

☐ TDR Selection Cuts:

- \Box Electrons: $|\eta| < 2.4 \text{ Pt} > 25 \text{ GeV}$
- □ Neutrino Pt > 25 GeV
- □No reconstructed jets
 - in the event with Pt>30 GeV
- □Recoil on transverse plane |u|<20 GeV

W⁺⁻ -> e⁺⁻ Full Simulation Detector level

- ☐ Standard Rome Electron Identification
- ☐ TDR Selection Cuts:
 - □Electrons: |η| < 2.4 Et > 25 GeV
 - \square Missing Et > 25 GeV
 - □No reconstructed jets
 - in the event with Pt>30 GeV
 - □Recoil on transverse plane |u|<20 GeV

Systematic Uncertainties using Full Simulation: Charge Misidentification

Charge Misidentification dilutes the

Charge Asymmetry

Correction:

$$A^{TRUE} \equiv \frac{A^{RAW} - F^{-} + F^{+}}{1 - F^{-} + F^{+}}$$

ARAW = Measured Asymmetry

ATRUE = Corrected Asymmetry

Freque er

misidentified as er

Freque er

misidentified as er

o Mis-ID rate negligible?

Motivations for Z+b study

- Measurement of the b-quark PDF
 - Process sensitive to b content of the proton
 (J. Campbell et al. Phys. Rev. D69:074021, 2004)

- Background to Higgs search
 - In models with enhanced $\sigma(h+b)$ and BR(h-> $\mu\mu$) (J. Campbell et al. Phys. Rev. D67:095002, 2003)

- Background to MS Higgs search
 - In models where pp ZH con H bb

Why do we measure the b PDF?

- bb->Z @ LHC is ~5% of entire Z production
- Knowing σ_Z to about 1% requires a b-pdf precision of the order of 20%

Now we have only HERA measurements, far from this precision

Z+b with different PDF sets

MRST5NLO, CTEQ5M1, Alehkin1000 (with LHAPDF in Herwig)

- Differences in total Z+b cross-section are of the order of 5%
- Some sensitivity from differential distributions: jet energy calibration crucial
- Other PDF sets predict larger differences (e.g., MRST5NNL0 >10%)

