

Quantitative copper and iron measurement in silicon using contactless recombination lifetime measurements

Hele Savin Electron Physics Laboratory TKK Micronova

2.5.2005 6th RD 50

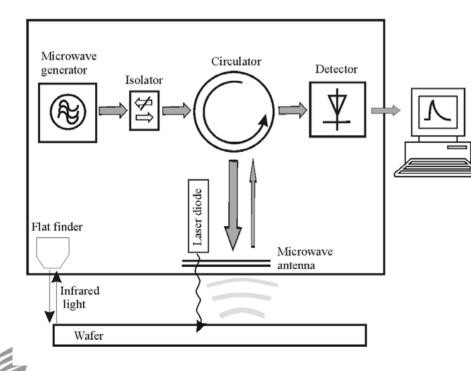
Outline

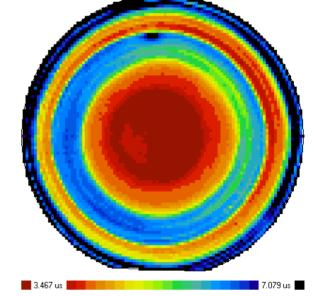
- ✓ Introduction
- Recombination lifetime methods
 - SPV (Surface Photovoltage)
 - µ–PCD (Microwave Photoconductive Decay)
- ✓ Measuring iron
- ✓ Measuring copper
- \checkmark Fe + Cu, how to separate?
- ✓ Conclusions

HELSINKI UNIVERSITY OF TECHNOLOGY

Introduction

- ✓ Iron and copper are harmful impurities in silicon processing
 - carrier lifetime degradation and bulk leakage current in detectors
 - fast contamination of large wafer areas even from point sources and from the wafer backside
 - metals become supersaturated during cooling even at relatively low concentrations, and may form precipitates or complexes
 - ..
- To monitor the cleanliness of silicon processing, it is important to have sensitive and reliable detection tools for metallic contamination
- Contactless recombination lifetime methods offer an attractive alternative as measurements are fast, non-destructive, and sensitive to measured defect concentrations
- ✓ Problem: How to identify defects from lifetime measurements?




Centre for micro- and nanotechnology

HELSINKI UNIVERSITY OF TECHNOLOGY

Microwave Photoconductive Decay (µ-PCD)

- ✓ Pulsed laser diode creates excess carriers in the wafer
- Excess carriers contribute to the conductivity of the wafer (photoconductivity)
- Microwaves are used to detect the change in conductivity
- A software algorithm evaluates the time constant of the decay from the measured transient
- ✓ Operates at high injection

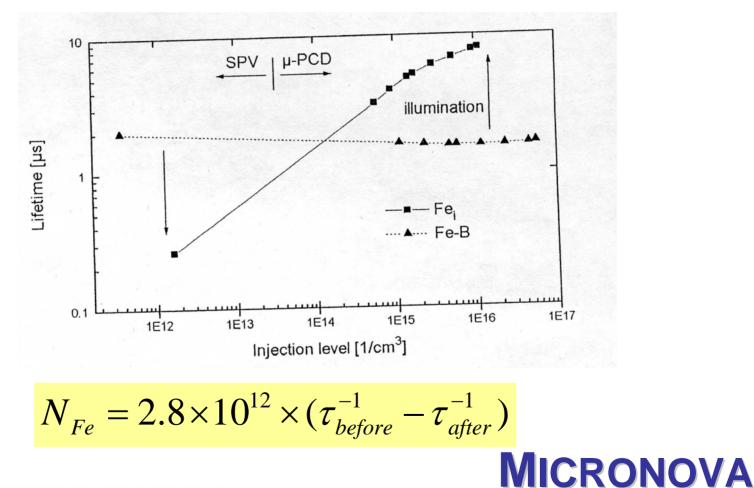


HELSINKI UNIVERSITY OF TECHNOLOGY

Surface Photovoltage (SPV)

Near-surface band bending attractive for minority carriers \checkmark Variation of light wavelength (different penetration depth) \checkmark Low surface recombination velocity Probe Head \checkmark Operates at low injection \checkmark lasers SPV ectronics Periodic ••• electrons excitation Capacitive sensor Silicon wafer \mathbf{O} \mathbf{O} \mathbf{O} holes light [≇] SPV 1/α light \bigcirc \bigcirc \bigcirc \bigcirc Minority carrier diffusion length

Fe concentration monitoring with SPV


HELSINKI UNIVERSITY OF TECHNOLOGY

Centre for micro- and nanotechnology

MICRONOVA

Fe concentration monitoring with $\mu\text{-PCD}$

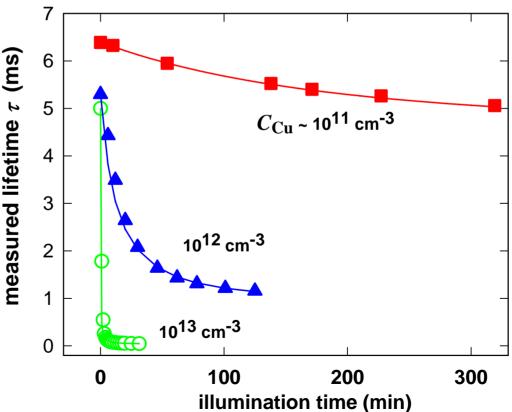
- ✓ Similar to SPV, dissociation of Fe-B pairs
- \checkmark Illumination increases the lifetime

HELSINKI UNIVERSITY OF TECHNOLOGY

Cu monitoring with μ -PCD

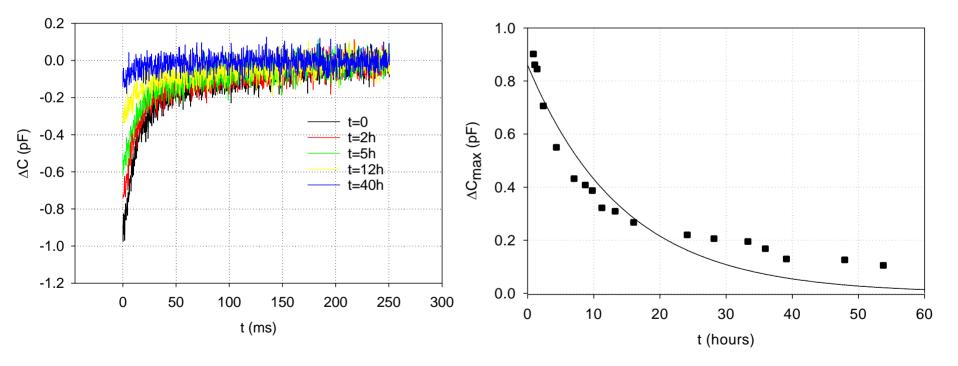
- Problem: Cu out-diffuses to the wafer surfaces
 Solution : Deposit positive corona charge on the wafer surface
- Problem: Cu does not introduce deep levels or influence the carrier lifetime
 Solution: Cu precipitates decrease the lifetime. Create Cu precipitates by light illumination
- Problem: How to improve sensitivity?
 Solution: Include small oxygen precipitates in the sample

HELSINKI UNIVERSITY OF TECHNOLOGY


Cu monitoring with $\mu\text{-PCD}$

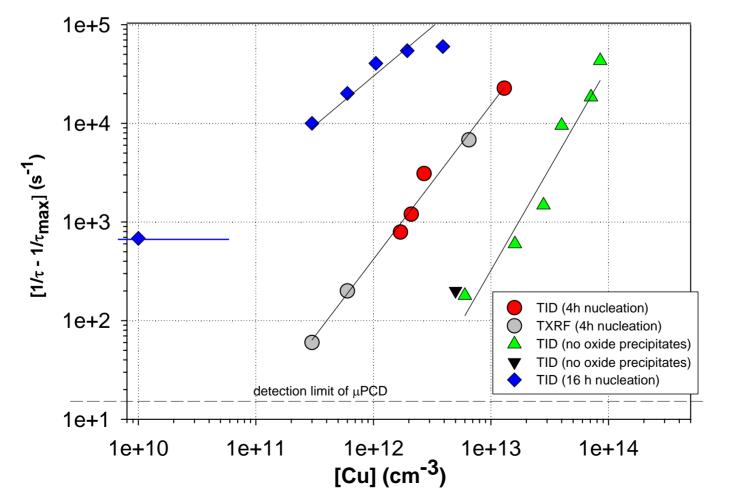
- ✓ Copper contaminated p-Si is illuminated with high-intensity bias-light
- Distinctive decrease is observed in the recombination lifetime
- Oxygen precipitates have a significant effect on the light activated recombination lifetime
- \checkmark The effect of light activation on the recombination rate is permanent

High-intensity light activates the precipitation of interstitial copper



An easily applicable method to detect low copper contamination

Copper studies, TID


- In order to make this a quantitative method, copper concentration has to be measured by another independent method
- ✓ TID (Transient Ion Drift) induced capacitance change can be used to measure the interstitial copper concentration at RT in *p*-Si

Note: The samples were copper contaminated over a year ago, copper is still in the interstitial form. Corona charge is very effective in preventing out-diffusion!

Quantitative detection of Cu by lifetime methods

- A systematic dependence of light activated lifetime vs. copper concentration is found
- ✓ Detection limit depends on the density of oxygen precipitates

TID equipment provided by Semilab Inc. Hungary

Conclusions

- We have developed a new contactless characterization method for Cu in Si, which is based on Cu precipitation under light illumination
- Under high-intensity illumination copper precipitates in a wafer bulk in p-Si at low concentration level degrading the recombination lifetime considerably
- Positive corona charge can be used to prevent out-diffusion of copper
- Oxygen precipitates provide effective heterogeneous nucleation sites for copper under high-intensity illumination

These observations provide an effective non-destructive method to detect copper contamination in p-Si, whose sensitivity is well below 10¹² cm⁻³

