P-spray implant optimization for p-type microstrip detectors -Status of the RD50 calibration run-

<u>C. Fleta</u>, M. Lozano, G. Pellegrini, K. Vatter, F. Campabadal, J. M. Rafí and M. Ullán

Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC) Spain

3th June 2005

Background

- IMB-CNM to process wafers for the Collaboration
- P-in-N and N-in-P
- Mask set designed by RD50
- Insulation between strips provided only by p-spray (no p-stops)

- Optimize the p-spray parameters before processing the RD50 wafers
 - Complete simulation process (ISE-TCAD)

Test run to check simulation results

Wafer 1: 25 keV, 10^{12} cm⁻²Wafer 4: 30 keV, 10^{12} cm⁻²Wafer 2: 25 keV, $1.4x10^{12}$ cm⁻²Wafer 5: 35 keV, 10^{12} cm⁻²Wafer 3: 25 keV, $2x10^{12}$ cm⁻²Wafer 6: 45 keV, 10^{12} cm⁻²

P-spray implant oxide thickness = 150 nm

Simulations: I-V

	P-spray	B peak (cm ⁻³)	B total (cm ⁻²)	V _{BD} (V)
Wafer 1	25 kev, 10 ¹² cm ⁻²	3.80×10 ¹⁵	3.01×10 ¹¹	> 1000
Wafer 2	25 kev, 1.4×10 ¹² cm ⁻²	5.32×10 ¹⁵	4.22×10 ¹¹	900
Wafer 3	25 kev, 2×10 ¹² cm ⁻²	7.59×10 ¹⁵	6.02×10 ¹¹	580
Wafer 4	30 kev, 10 ¹² cm ⁻²	4.13×10 ¹⁵	3.56×10 ¹¹	> 1000
Wafer 5	35 kev, 10 ¹² cm ⁻²	4.30×10 ¹⁵	3.85×10 ¹¹	960
Wafer 6	45 kev, 10 ¹² cm ⁻²	4.44×10 ¹⁵	4.09×10 ¹¹	910

 V_{BD} decreases as implanted dose increases

Simulations: strip insulation

Inversion layer at full depletion?

- Higher p-spray doses to avoid surface inversion on heavily irradiated devices, but V_{BD} decreases
 - Compromise solution
 - Strip insulation is not the major concern in irradiated detectors
 - More complete simulations needed

Wafer characteristics

- New wafers from Siltronic
- <100>, p-type, 300 ± 15 μm
- **D** ρ (nominal) = 30 kΩ.cm, ρ (measured) = 20 kΩ.cm

Fabricated devices

Electrical characterization

- Microstrips of wafers 1 to 5:
 - Very high leakage currents (mA/cm² @ 10 V)
 - Do not fulfill the requirements for radiation detectors

Electrical characterization

- Wafer 6
 - Leakage current ~ μA/cm²
 - V_{BD} > 600 V
 - $V_{FD} = 46 \pm 5 \text{ V} \rightarrow \rho = 17 \pm 2 \text{ k}\Omega.cm$

Electrical characterization

- Verify strip insulation
 - Measurement of the resistance between two consecutive microstrips

Surface is clearly inverted

Oxide charge measurement

Simulated devices: $Q_{ox} = 10^{11} \text{ cm}^{-2}$. Overestimated oxide quality?

- C-V measured in test structure (MOS capacitor)
 - Agreement with the simulated curve for Q_{ox} = 2.5x10¹⁰ cm⁻²
 - Another reason for the bad electrical performance

Spreading resistance measurements

Total implanted dose lower than the predicted by simulations

- Wafer 6: 70% of the expected dose
- Wafer 5: 9%

Second calibration run

Higher implant energies with the lowest dose (10¹² cm⁻²)

- 45 keV (= wafer 6)
- 60 keV
- 75 keV
- 90 keV

Second calibration run

- Defective wafers from Siltronic
 - P-spray implant oxide thicker in some areas (irregular wafer surface)
 - Will affect the implant profile
- Could this be the reason for the bad results of the previous run?
 - Wafers from the same provider but a different batch
 - Did not detect anything unusual during the first process

Conclusions

- Calibration runs to optimize the p-spray implant parameters in N-in-P detectors
 - First run: p-spray profiles lower than expected
 - Implantation doses near the technical limit of the ion implanter. Calibration error?
 - Wrong predictions by process simulator?
 - Defective wafers?
 - **□** ...?
 - Second run:
 - Oxide thickness not uniform due to irregular wafer surface
 - Still not finished
- What we have learnt so far...
 - Not sure of the suitability of the p-spray for heavily irradiated devices
 - Compromise between reasonable V_{BD} and good strip insulation
 - More complete studies needed
 - P-spray seems to be very sensitive to fabrication details
 - Alternative technologies?

