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All results are based upon 125mmx125mm CiS pspray 
test sensors:

• 22x32 cells on each chip
• 285mm thick dofz substrate from Wacker
- n- doped with r=2-5 kV-cm, <111> orientation
- oxygenated at 1150C for 24 hours

• irradiated with 24 GeV protons at PS to fluences:  
(5.9, 2.0, 0.47)x1014 neq/cm2

• annealed for 3 days at 308C
- all sensors are “Standard Annealed”

• bump-bonded at 208C, stored at -208C

2004 CMS Pixel Beam Test
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Readout Chip
• sensors bump-bonded 

to PSI30 ROC from 
Honeywell
- doesn’t sparsify data, 

permits readout of 
small signals

- good linearity to 30k 
e (at 158, mp charge 
deposit is ~10k e)

- not very rad-hard
• irradiated sensors 

bump-bonded “cold” to 
unirradiated ROCs

supply of PSI30 now exhausted!
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Test Beam Layout
Beam tests performed in SPS H2 beam:
• 150-225 GeV p+/p 
• 3T open geometry magnet with field along beam axis
• 4xy plane Si strip beam telescope
- 1 mm resolution
- hybrid platform
 rotates
- platform cooled 
 to: -158C, -308C
- ROC heat load increases sensor T to: -108C, -258C
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Charge Collection (V. Chiochia+M.S.)
Charge collection was studied from the signal profiles in a 
row of pixels illuminated by a 158 beam and B=0,

• each pixel samples Q deposited at a different depth
• precise beam telescope info is used to refine profile
• collected charge profiles are sensitive to trapping
- trap rates measured by Ljubljana + Dortmund groups
- need a simulation to interpret the data

• profiles at several V provide enormous information/
contraints on E-field profiles

Read-Out Chip

depleted region
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Over the last several years, we have constructed a 
detailed sensor simulation, Pixelav [NIM A511, 88 (2003)] 

• Particle tracking: e-h pairs are generated according to 
x-sections of Bichsel [RMP 60, 663 (1988)]
- E<1 MeV delta rays propagated according to range/

energy relation (density of e-h pairs from dE/dx)

Simulation

Particle tracking:
carrier generation
w/ delta rays

 

Electric field map
  from ISE TCAD
 (double junction 
      modeling)

Carrier transport + 
signal calculation
(include trapping)

Electronic simul.
+ data reformating

Test beam
data analysis
package Pixelav

TCAD 9.0
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• Electric field calculation: uses TCAD 9.0 software
- simulate 1/4 pixel cell to keep mesh size ~25,000 

nodes.  This requires 4-fold symmetry (no bias dot)
- no process simulation, use MESH w/ analytic doping 

profiles to generate grid and doping files

Z

X

Y

DopingConcentration

1.0E+18

3.0E+15

9.1E+12

-9.1E+12

-3.0E+15

-1.0E+18

dot1_new_nb_msh.grd - dot1_new_nb_msh.dat

potential distributiondoping profiles
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• Transport calculations are done by integrating the fully 
saturated equation of motion for the carriers

- 4th-order R-K calc is vectorized for G4 processor
- incorporates diffusion and trapping
- signal induced from displaced, trapped charge is 

calculated from segmented parallel plate cap. model
• Electronics Simulation:
- includes leakage current and electronic noise
- readout chip analog response from measurements
- ADC digitization
- reformat data to look like test beam data

d!r
dt

=
µ
[
q!E +µrH!E×!B+qµ2r2

H(!E ·!B)!B
]

1+µ2r2
HB2
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Irradiated Data vs Simulation
Comparing the charge collection profiles of real and 
simulated data at Φ1=5.9x1014 neq/cm2

• -300V data are well described by Neff=4.5x1012cm-3 p-

• width of -150V peak requires Neff=24x1012cm-3 p-
- tail not described

• Constant Neff/linear E-fields ruled out!

-150V -300V
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Modeling of Sensors
Space charge in irradiated sensors can be produced by 
ionized traps.  The SRH description is based on ALL 
trapping states: 

•ND and NA are the densities of h- and e-traps
•  fD and fA are the trap occupation probabilities
• follow Eremin, Verbitskaya, Li and use single h/e-traps

-  D and A states don’t have to be physical states: they 
represent average quantities!

- model parameters are not physical

ρeff=eÂ
D

ND fD− eÂ
A

NA fA +ρdopants

"e [ND fD−NA fA]+ρdopants
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The trap occupation probabilities are given in terms of 
the usual SRH quantities:

• ED, EA are defined relative to the mid-bandgap energy

• se and sh are not well-known in general

• rescaling se/hLrse/h leaves fD and fA invariant. They 
depend upon sh/se only!  [key point]

• rescaling n/pLr(n/p) does not leave fD and fA invariant 
(fD and fA depend on I and ED, EA)

fD=
vhσD

h p+ veσD
e nieED/kT

veσD
e (n+nieED/kT)+ vhσD

h (p+nie−ED/kT)

fA=
veσA

e n+ vhσA
hnie−EA/kT

veσA
e (n+nieEA/kT)+ vhσA

h(p+nie−EA/kT)



12

Eremin, Verbitskaya, Li create double junctions from the 
trapping of the generation current,

• the trap parameters (3rd RD50 Workshop) are:

trap E (eV) gint (cm-1)  se (cm2)  sh (cm2)

donor EV+0.48 6 1x10-15 1x10-15

acceptor EC-0.525 3.7 1x10-15 1x10-15

 

z

n+ p+

z

n+ p+

 

z

n+ p+

z

n+ p+

J
!eff=NDfD-NAfA

double peak

Ez

Je Jh

n(z) p(z)

    p-

doped

    n-

doped

EVL Model



EVL separates the trap dynamics from the leakage 
current.  In Dessis, any attempt to add current-
generating defects also traps charge.  Solution:
• rescale se/hLrse/h  (leaves fD,fA invariant) but 

increases SRH generation current by a factor of r,

- can adjust leakage current without appealing to 
external sources

- EVL fix se= sh = 10
-15 cm-2, keeping se= sh is 

mathematically equivalent 
13

DJs in ISE DESSIS

U=
rvhveσD

h σD
e ND(np−n2

i )
veσD

e (n+nieED/kT)+ vhσD
h (p+nie−ED/kT)

+
rvhveσA

hσA
e NA(np−n2

i )
veσA

e (n+nieEA/kT)+ vhσA
h(p+nie−EA/kT)

= rU0



What current should we use?  I is larger than one would 
expect for a 2.75x4x0.285 mm3 volume: try 2 values

• Model ere5 is normalized to produce 30% of Iobs
[saturates a=I(20C)/(VF)=a0 =4x10-17 A/cm @300V]

• Model ere6 is normalized to produce 100% of Iobs 

Neither of these can describe the data!
14

150V

450V

200V

300V

Φ1=5.9x1014 neq/cm2
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•parameters NA, ND, sA
e   ,s

A
h  , s

D
e , s

D
h   are varied keeping the 

same EA, ED as EVL

• signal trapping rates Ge, Ghare uncertain (610% level due 
to F uncertainties and 630% level due to possible 
annealing)  and were also varied in the procedure

• very slow and tedious: 8-12hr TCAD run + 4x(8-16)hr 
Pixelav runs + test beam analysis

• “eyeball” fitting only - no x2 or error matrix
- parameters varied by hand (no Minuit)

• strong correlations between parameters

“Fitting” the Data
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Best fit to 5.9x1014 neq/cm2:  
labelled dj44

•sh/se=0.25, NA/ND=0.40

• scale Ge/h by 0.8 as 
compared with rate G0 
expected for F 

•E-field is quite symmetric 
across sensor

150V

450V300V

200V
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• large z, -150V tail becomes too large for ND<35x1014

• large z, -300V signal becomes too small for ND>70x1014

• I~NDse so any I from a0/2 to a0 fits data
• Ge~ veNAse~ NDse so observed Ge is just OK 

There is a contour in NDvs se space (se~ND
-2.5) that 

produces (more or less) the same efield in the detector:
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Use T-dependent recombination in TCAD and T-
dependent quantities in Pixelav (me/h, De/h, and Ge/h):

•dj-model is predictive! 

T=-10C

150V 200V

200V

300V

300V

450V

450V

T=-25C

F1=6x1014 neq/cm2:

Temperature Dependence
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• signature of a doubly-peaked 
electric field:
- e-h pairs deposited near 

field minimum separate only 
a little before trapping, 
produces local minimum

- the apparently “unphysical” 
bump is caused  by 
collection of holes in the 
higher field region near the 
p+ implant (e’s drift into low 
field region and trap)

The “Wiggle”

E-field

The charge collection profiles show a “wiggle” at low bias:



NA(Φ2) = RA · NA(Φ1)
ND(Φ2) = RD · ND(Φ1)

Γe/h(Φ2) = RΓ · Γe/h(Φ1)




RA = RD = RΓ =
Φ2

Φ1
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✦ linear scaling of the trap densities doesn’t work!
✴ too much field on the p+ side

✦ the “wiggle” is still present at F2=2x1014 neq/cm2

✴ a doubly-peaked field persists at lower fluences

T=-10C 25V

100V 150V

50V
F2=2x1014

Scaling to Lower Fluences
Scale densities + trapping rates of dj44 linearly by fluence:
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Why doesn’t linear F scaling work?
✦ scaling of fA/D with n,p is wrong (wrong EA/D)?
✦ quadratic F  scaling of V2X states?

Can increase n+ side field and decrease p+ side by 
increasing NA/ND but keeping Ge/h and I linear in F

✦ RG=(RA+RD)/2, keeps I linear
✦ increase NA/ND from 0.4 to 0.68

(closer to EVL value of 0.62)
✦ must scale the “full” Ileak point

(range is ~ 610% in ND)
✦ net donor sh/se also prefers 

to increase (not very sensitive)
✦ took 3 months of tuning!

RΓ =
Φ2

Φ1
, RA = RΓ(1+δ), RD = RΓ(1−δ)
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Best fit to 2.0x1014 neq/cm2:  
labelled dj57a

•NA/ND=0.68

•sAh/sAe=0.25, sDh/sDe=1.00, 

•E-field still doubly-peaked 
(more than EVL prediction)

•Also compare with PMP 
model

25V 100V 150V50V
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Petasecca, Moscatelli, and Pignatel showed a 3-state 
model of irradiated n-type silicon at the 5th RD50 
workshop:

• dominant acceptor traps e- creating net negative 
space charge (effective p-type doping)
- model of linear charge inversion
- no double junctions or doubly-peaked E-fields

trap E (eV) gint (cm-1)  se (cm2)  sh (cm2)

donor EV+0.36 1 1x10-15 1x10-16

acceptor EC-0.42 26 1x10-16 8x10-15

acceptor EC-0.50 0.1 1x10-16 1x10-15

PMP Model
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2.0x1014 neq/cm2 compared with EVL and PMP
•EVL is adjusted to produce expected leakage current
•PMP produces more or less correct leakage current (a 

bit low)

What about the 0.47x1014 neq/cm2 point?

25V

100V 150V50V



RΓ =
Φ3

Φ2
, RA = RΓ(1+δ′), RD = RΓ(1−δ′)
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✦ dj62b: NA/ND=0.75, sAh/sAe=0.25, sDh/sDe=1.00
✴ charge drift times now comparable to preamp shaping 

(simulation may not be reliable)
✦ the data “wiggle” is still present at F3=0.47x1014 neq/cm2

✴ a doubly-peaked field persists at lowest fluence!!!

Scaling to Even Lower Fluences
Scale dj57a to increase NA/ND at F3=0.47x1014 neq/cm2

10V 15V 20V 25V

T=-10C
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We can still see evidence of a 
doubly-peaked electric field near 
the “type-inversion” fluence:

✦ profiles are not described by 
thermodynamically ionized 
acceptors alone

✦ trapped leakage current can 
describe everything

Scale factor summary:
✦ trapping rates are linear in F
✦ NA/ND increases from 0.40 at 

F1=5.9x1014 neq/cm2 to 0.75 at 
F3=0.47x1014 neq/cm2
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• It is clear that a two-peak electric field is necessary to  
describe our charge collection data even at low fluence

• A two-trap double junction model can be tuned to 
provide reasonable agreement with the data
- NA/ND must vary with fluence
- describes non-trivial T and F dependence of E-field

Conclusions
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• Assuming that the “chemistry” of irradiated dofz 
silicon is independent of initial dopant 
- suggests that there is no advantage of n/n over n/p at 

high F (n/p is much cheaper to build)

• Model will be important to calibrate the hit 
reconstruction after irradiation in LHC 

F=5.9x1014 neq/cm2

Ndop=1.2x1012 cm-3
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✦m(E) varies by ~3 across 
the detector thickness in 
irradiated sensors
✴ creates very non-

linear charge sharing
✴ largest in middle and 

smallest near implants 
✦ trapping also causes non-

linear response in 
irradiated sensors

tanθL !
erHvBsinθvB

eE
= rHµ(E)BsinθvB

The Lorentz angle is linear in the mobility m(E)
-  Charge Sharing in 4T CMS After Irradiation 


