Updated double junction simulation of CMS pixel test beam data

(1) Physik Institut der Universitaet Zuerich-Irchel, (2) Purdue University, (3) University of Mississippi, (5) Paul Scherrer Institut, (6) Johns Hopkins University, (7) Institut fuer Physik der Universitaet Basel
2004 CMS Pixel Beam Test

All results are based upon 125μm x 125μm CiS pspray test sensors:

- 22x32 cells on each chip
- 285μm thick doped substrate from Wacker:
 - n- doped with ρ = 2-5 kΩ-cm, <111> orientation
 - oxygenated at 1150°C for 24 hours
- irradiated with 24 GeV protons at PS to fluences: (5.9, 2.0, 0.47)×10^{14} n_{eq}/cm^{2}
- annealed for 3 days at 30°C
 - all sensors are “Standard Annealed”
- bump-bonded at 20°C, stored at -20°C
Readout Chip

- sensors bump-bonded to PSI30 ROC from Honeywell
 - doesn’t sparsify data, permits readout of small signals
 - good linearity to 30k e (at 15°, mp charge deposit is ~10k e)
 - not very rad-hard
- irradiated sensors bump-bonded “cold” to unirradiated ROCs

supply of PSI30 now exhausted!
Test Beam Layout

Beam tests performed in SPS H2 beam:

- 150-225 GeV π^+/p
- 3T open geometry magnet with field along beam axis
- 4xy plane Si strip beam telescope
 - 1 μm resolution
 - hybrid platform rotates
 - platform cooled to: $-15^\circ C$, $-30^\circ C$
 - ROC heat load increases sensor T to: $-10^\circ C$, $-25^\circ C$
Charge Collection (V. Chiochia+M.S.)

Charge collection was studied from the signal profiles in a row of pixels illuminated by a 15° beam and B=0,• each pixel samples Q deposited at a different depth
• precise beam telescope info is used to refine profile
• collected charge profiles are sensitive to trapping
 – trap rates measured by Ljubljana + Dortmund groups
 – need a simulation to interpret the data
• profiles at several V provide enormous information/contraints on E-field profiles
Over the last several years, we have constructed a detailed sensor simulation, Pixelav [NIM A511, 88 (2003)]

- Particle tracking: e-h pairs are generated according to x-sections of Bichsel [RMP 60, 663 (1988)]
 - E<1 MeV delta rays propagated according to range/energy relation (density of e-h pairs from dE/dx)
Electric field calculation: uses TCAD 9.0 software

- simulate 1/4 pixel cell to keep mesh size ~25,000 nodes. This requires 4-fold symmetry (no bias dot)
- no process simulation, use MESH w/ analytic doping profiles to generate grid and doping files

![Doping Profiles](image1.png)

![Potential Distribution](image2.png)
Transport calculations are done by integrating the fully saturated equation of motion for the carriers:

\[
\frac{d\vec{r}}{dt} = \mu \left[q\vec{E} + \mu r_H \vec{E} \times \vec{B} + q\mu^2 r_H^2 (\vec{E} \cdot \vec{B}) \vec{B} \right] \frac{1}{1 + \mu^2 r_H^2 B^2}
\]

- 4th-order R-K calc is vectorized for G4 processor
- incorporates diffusion and trapping
- signal induced from displaced, trapped charge is calculated from segmented parallel plate cap. model

Electronics Simulation:
- includes leakage current and electronic noise
- readout chip analog response from measurements
- ADC digitization
- reformat data to look like test beam data
Comparing the charge collection profiles of real and simulated data at $\Phi_1=5.9 \times 10^{14}$ $n_e/q/cm^2$

-300V data are well described by $N_{\text{eff}}=4.5 \times 10^{12}$ cm^{-3} p-

- width of -150V peak requires $N_{\text{eff}}=24 \times 10^{12}$ cm^{-3} p-
 - tail not described

- Constant N_{eff}/linear E-fields ruled out!
Space charge in irradiated sensors can be produced by ionized traps. The SRH description is based on **ALL** trapping states:

\[\rho_{\text{eff}} = e \left(\sum_{D} N_D f_D - \sum_{A} N_A f_A \right) + \rho_{\text{dopants}} \]

\[\approx e \left[N_D f_D - N_A f_A \right] + \rho_{\text{dopants}} \]

- \(N_D \) and \(N_A \) are the densities of h- and e-traps
- \(f_D \) and \(f_A \) are the trap occupation probabilities
- follow Eremin, Verbitskaya, Li and use single h/e-traps
 - D and A states **don’t have to be physical states**: they represent average quantities!
 - model parameters are not physical
The trap occupation probabilities are given in terms of the usual SRH quantities:

\[f_D = \frac{v_h \sigma_h^D p + v_e \sigma_e^D n_i e^{E_D/kT}}{v_e \sigma_e^D (n + n_i e^{E_D/kT}) + v_h \sigma_h^D (p + n_i e^{-E_D/kT})} \]

\[f_A = \frac{v_e \sigma_e^A n + v_h \sigma_h^A n_i e^{-E_A/kT}}{v_e \sigma_e^A (n + n_i e^{E_A/kT}) + v_h \sigma_h^A (p + n_i e^{-E_A/kT})} \]

- \(E_D, E_A \) are defined relative to the mid-bandgap energy
- \(\sigma_e, \sigma_h \) are not well-known in general
- rescaling \(\sigma_{e/h} \Rightarrow r \sigma_{e/h} \) leaves \(f_D \) and \(f_A \) invariant. They depend upon \(\sigma_h / \sigma_e \) only! [key point]
- rescaling \(n/p \Rightarrow r(n/p) \) does not leave \(f_D \) and \(f_A \) invariant (\(f_D \) and \(f_A \) depend on \(I \) and \(E_D, E_A \))
Eremin, Verbitskaya, Li create double junctions from the trapping of the generation current,

\[\rho_{\text{eff}} = N_D f_D - N_A f_A \]

- the trap parameters (3rd RD50 Workshop) are:

<table>
<thead>
<tr>
<th>trap</th>
<th>(E) (eV)</th>
<th>(g_{\text{int}}) (cm(^{-1}))</th>
<th>(\sigma_e) (cm(^2))</th>
<th>(\sigma_h) (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>donor</td>
<td>(E_V + 0.48)</td>
<td>6</td>
<td>(1 \times 10^{-15})</td>
<td>(1 \times 10^{-15})</td>
</tr>
<tr>
<td>acceptor</td>
<td>(E_C - 0.525)</td>
<td>3.7</td>
<td>(1 \times 10^{-15})</td>
<td>(1 \times 10^{-15})</td>
</tr>
</tbody>
</table>
EVL separates the trap dynamics from the leakage current. In Dessis, any attempt to add current-generating defects also traps charge. Solution:

- rescale $\sigma_{e/h} \Rightarrow r\sigma_{e/h}$ (leaves f_D, f_A invariant) but increases SRH generation current by a factor of r,

$$U = \frac{r v_h v_e \sigma_h^D \sigma_e^D N_D (np - n_i^2)}{v_e \sigma_e^D (n + n_ie^{E_D/kT}) + v_h \sigma_h^D (p + n_ie^{-E_D/kT})} + \frac{r v_h v_e \sigma_h^A \sigma_e^A N_A (np - n_i^2)}{v_e \sigma_e^A (n + n_ie^{E_A/kT}) + v_h \sigma_h^A (p + n_ie^{-E_A/kT})} = rU_0$$

- can adjust leakage current without appealing to external sources
- EVL fix $\sigma_e = \sigma_h = 10^{-15}$ cm$^{-2}$, keeping $\sigma_e = \sigma_h$ is mathematically equivalent
What current should we use? \(I \) is larger than one would expect for a 2.75x4x0.285 mm\(^3\) volume: try 2 values

\[\Phi_1 = 5.9 \times 10^{14} \, \text{n}_e/\text{cm}^2 \]

- Model ere5 is normalized to produce 30% of \(I_{\text{obs}} \) [saturates \(\alpha = I(20\, \text{C})/(V\Phi) = \alpha_0 = 4 \times 10^{-17} \, \text{A/cm} @300\, \text{V} \)]
- Model ere6 is normalized to produce 100% of \(I_{\text{obs}} \)

Neither of these can describe the data!
“Fitting” the Data

- parameters $N_A, N_D, \sigma^A_e, \sigma^A_h, \sigma^D_e, \sigma^D_h$ are varied keeping the same E_A, E_D as EVL
- signal trapping rates Γ_e, Γ_h are uncertain ($\pm 10\%$ level due to Φ uncertainties and $\pm 30\%$ level due to possible annealing) and were also varied in the procedure
- very slow and tedious: 8-12hr TCAD run + 4x(8-16)hr Pixelav runs + test beam analysis
- “eyeball” fitting only - no χ^2 or error matrix
 - parameters varied by hand (no Minuit)
- strong correlations between parameters
Best fit to $5.9 \times 10^{14} \text{ n}_\text{eq}/\text{cm}^2$:
labelled dj44

- $\sigma_h/\sigma_e = 0.25, N_A/N_D = 0.40$
- scale Γ_e/h by 0.8 as compared with rate Γ_0 expected for Φ
- E-field is quite symmetric across sensor
There is a contour in N_D vs σ_e space ($\sigma_e \propto N_D^{-2.5}$) that produces (more or less) the same efield in the detector:

- large z, -150V tail becomes too large for $N_D < 35 \times 10^{14}$
- large z, -300V signal becomes too small for $N_D > 70 \times 10^{14}$
- $I \propto N_D \sigma_e$ so any I from $\alpha_0/2$ to α_0 fits data
- $\Gamma_e \sim v_e N_A \sigma_e \propto N_D \sigma_e$ so observed Γ_e is just OK
Temperature Dependence

Use T-dependent recombination in TCAD and T-dependent quantities in Pixelav ($\mu_{e/h}, D_{e/h}$, and $\Gamma_{e/h}$):

- $T=-10\,^\circ C$

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>$\Phi_1=6\times10^{14} \text{ n}_\text{eq}/\text{cm}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>

- $T=-25\,^\circ C$

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>

- $\text{dj-model is predictive!}$
The “Wiggle”

The charge collection profiles show a “wiggle” at low bias:

- signature of a doubly-peaked electric field:
 - e-h pairs deposited near field minimum separate only a little before trapping, produces local minimum
 - the apparently “unphysical” bump is caused by collection of holes in the higher field region near the p+ implant (e’s drift into low field region and trap)
Scaling to Lower Fluences

Scale densities + trapping rates of d_{j44} linearly by fluence:

\[
\begin{align*}
N_A(\Phi_2) &= R_A \cdot N_A(\Phi_1) \\
N_D(\Phi_2) &= R_D \cdot N_D(\Phi_1) \\
\Gamma_{e/h}(\Phi_2) &= R_\Gamma \cdot \Gamma_{e/h}(\Phi_1)
\end{align*}
\]

\[
R_A = R_D = R_\Gamma = \frac{\Phi_2}{\Phi_1}
\]

$T=-10^\circ C$

$\Phi_2=2 \times 10^{14}$

✧ linear scaling of the trap densities doesn’t work!

✴ too much field on the p+ side

✧ the “wiggle” is still present at $\Phi_2=2 \times 10^{14}$ n_{eq}/cm^2

✴ a doubly-peaked field persists at lower fluences
Why doesn’t linear Φ scaling work?

✦ scaling of $f_{A/D}$ with n, p is wrong (wrong $E_{A/D}$)?

✦ quadratic Φ scaling of V_{2X} states?

Can increase n+ side field and decrease p+ side by increasing N_A/N_D but keeping $\Gamma_{e/h}$ and I linear in Φ

$$R_{\Gamma} = \frac{\Phi_2}{\Phi_1}, \quad R_A = R_{\Gamma}(1 + \delta), \quad R_D = R_{\Gamma}(1 - \delta)$$

✦ $R_{\Gamma} = (R_A + R_D)/2$, keeps I linear

✦ increase N_A/N_D from 0.4 to 0.68 (closer to EVL value of 0.62)

✦ must scale the “full” I_{leak} point (range is $\pm 10\%$ in N_D)

✦ net donor σ_h/σ_e also prefers to increase (not very sensitive)

✦ took 3 months of tuning!
Best fit to 2.0×10^{14} n_{eq}/cm^2: labelled dj57a

- $N_A/N_D = 0.68$
- $\sigma_{Ah}/\sigma_{Ae} = 0.25$, $\sigma_{Dh}/\sigma_{De} = 1.00$,
- E-field still doubly-peaked (more than EVL prediction)
- Also compare with PMP model
Petasecca, Moscatelli, and Pignatel showed a 3-state model of irradiated n-type silicon at the 5th RD50 workshop:

- dominant acceptor traps e- creating net negative space charge (effective p-type doping)
 - model of linear charge inversion
 - no double junctions or doubly-peaked E-fields

<table>
<thead>
<tr>
<th>trap</th>
<th>E (eV)</th>
<th>g_{int} (cm$^{-1}$)</th>
<th>σ_e (cm2)</th>
<th>σ_h (cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>donor</td>
<td>$E_v+0.36$</td>
<td>1</td>
<td>1×10^{-15}</td>
<td>1×10^{-16}</td>
</tr>
<tr>
<td>acceptor</td>
<td>$E_c-0.42$</td>
<td>26</td>
<td>1×10^{-16}</td>
<td>8×10^{-15}</td>
</tr>
<tr>
<td>acceptor</td>
<td>$E_c-0.50$</td>
<td>0.1</td>
<td>1×10^{-16}</td>
<td>1×10^{-15}</td>
</tr>
</tbody>
</table>
$2.0 \times 10^{14} \text{ } n_{eq}/\text{cm}^2$ compared with EVL and PMP

- EVL is adjusted to produce expected leakage current
- PMP produces more or less correct leakage current (a bit low)

What about the $0.47 \times 10^{14} \text{ } n_{eq}/\text{cm}^2$ point?
Scaling to Even Lower Fluences

Scale dj57a to increase N_A/N_D at $\Phi_3=0.47 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$

$$R_{\Gamma} = \frac{\Phi_3}{\Phi_2}, \quad R_A = R_{\Gamma}(1 + \delta'), \quad R_D = R_{\Gamma}(1 - \delta')$$

✦ $N_A/N_D = 0.75, \sigma_{Ah}/\sigma_{Ae} = 0.25, \sigma_{Dh}/\sigma_{De} = 1.00$

✴ charge drift times now comparable to preamp shaping (simulation may not be reliable)

✧ the data “wiggle” is still present at $\Phi_3=0.47 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$

✴ a doubly-peaked field persists at lowest fluence!!!
We can still see evidence of a doubly-peaked electric field near the “type-inversion” fluence:

✦ profiles are not described by thermodynamically ionized acceptors alone
✦ trapped leakage current can describe everything

Scale factor summary:

✦ trapping rates are linear in Φ
✦ N_A/N_D increases from 0.40 at $\Phi_1=5.9 \times 10^{14}$ n_{eq}/cm^2 to 0.75 at $\Phi_3=0.47 \times 10^{14}$ n_{eq}/cm^2
Conclusions

- It is clear that a two-peak electric field is necessary to describe our charge collection data even at low fluence.
- A two-trap double junction model can be tuned to provide reasonable agreement with the data.
 - \(\frac{N_A}{N_D} \) must vary with fluence.
 - Describes non-trivial \(T \) and \(\Phi \) dependence of E-field.
• Assuming that the “chemistry” of irradiated doped silicon is independent of initial dopant
 - suggests that there is no advantage of n/n over n/p at high Φ (n/p is much cheaper to build)

$\Phi = 5.9 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$

$N_{dop} = 1.2 \times 10^{12} \text{ cm}^{-3}$

• Model will be important to calibrate the hit reconstruction after irradiation in LHC
Charge Sharing in 4T CMS After Irradiation

The Lorentz angle is linear in the mobility $\mu(E)$

$$\tan \theta_L \simeq \frac{er_H v_B \sin \theta_{vB}}{eE} = r_H \mu(E) B \sin \theta_{vB}$$

- $\mu(E)$ varies by ~3 across the detector thickness in irradiated sensors
 - creates very non-linear charge sharing
 - largest in middle and smallest near implants
- trapping also causes non-linear response in irradiated sensors