Test Beam Results of Proton Irradiated Czochralski Silicon Strip Detector

P. Luukka, T. Lampén, L. A. Wendland, S. Czellar, E. Hceggström, J. Härkönen, I. Kassamakov, T. Mäenpää and E. Tuovinen.

Outline

Motivation and background
Device processing
Silicon Beam Telescope
Beam test results
Conclusions

Motivation and background

In the summer 2003 we tried to test an irradiated (1.6*1014 1-MeV neutron equivalent fluence) large-area (32.4 cm^{2}) Czochralski silicon strip detector in a beam, but did not succeed, because there were problems with the beam telescope DAQ.

This year we wanted to find an explanation to the problems seen the year before and in addition to see if the irradiated Czochralski detector still can detect particles after 1 year annealing at room temperature.

Device processing

The tested device was processed at the Helsinki University of Technology Microelectronics Center with a simple process containing: -four lithography steps, two thermal oxidations, two ion implantations and three sputter depositions.

The size of the $A C$-coupled detector was $32.4 \mathrm{~cm}^{2}$. The width of the $1024 \mathrm{p}^{+}$-strips was $10 \mu \mathrm{~m}$, length 6.154 cm and pitch $50 \mu \mathrm{~m}$.

The detector silicon substrate was grown with Magnetic Czochralski method

- nominal resistivity $900 \Omega \mathrm{~cm}$,
- thickness $380 \mu \mathrm{~m}$,
- orientation <100>,
- oxygen concentration < 10 ppma

After processing, the detector was measured to deplete at 420 V and its leakage current to be $2.3 \mu \mathrm{~A}$.

The detector was irradiated at the Jyväskyla University Accelerator Laboratory with 10 MeV protons to a 1.6*1014 $1-\mathrm{MeV}$ neutron equivalent dose.

After the irradiation the depletion voltage (225 V) and the leakage current ($261 \mu \mathrm{~A}$) was measured in $-10^{\circ} \mathrm{C}$.

For the beam test, the detector was attached to a hybrid that contained 8 VA1 chips.

Silicon Beam Telescope

The Silicon Beam Telescope measured the tracks of incoming particles and it provided the reference tracks for the detector characterization.

The telescope consisted of pairs of horizontal and vertical position sensitive silicon detectors
 attached to read-out electronics and a data acquisition system that was realized with Linux based C++-code using object oriented techniques.

The offline analysis of the collected data was performed with a dedicated object-oriented software package.

O HELSINKI INSTITUTE OF PHYSICS

Courtesy to L.A. Wendland

Panja Luukka
Panja.Luukka@cern.ch
$6^{\text {th }}$ RD50 Workshop
Helsinki, 2-4 June, 2005

DeSHME

- Resolution $42 \mu \mathrm{~m}$
-Efficiency 29\%
-Ratio of S and N clusters near track 5.8
.S/N 3.0
- Correlation of noise for adjacent strips 20.4\%
-Correlation of noise for next-to-

Residuals of $C Z$. adjacent strips 18.2\%

O HELSINKI INSTITUTE OF PHYSICS

Results

Residuals and efficiency of the $C Z$

Raw data values recorded outside a Spill. Why doesn't this follow the normal distribution?

HELSINKI INSTITUTE OF PHYSICS

Results

Signal-to-noise ratio was defined by calculating the signal value for each cluster related to a track (residing within $\pm 2 \sigma$ of $C Z$ resolution from the interpolated impact point of the track) by summing over the signal values of the strips $\left(S=S_{1}+S_{2}+. .+S_{n}\right)$.

When there is no correlation between strips, the average strip-wise noise is:

$$
\bar{\sigma}=\sqrt{\frac{1}{n}\left(\sum_{i} \sigma_{i}^{2}\right)}
$$

The S / N value is then obtained by dividing the average signal by the obtained average noise. If no correlation is taken into account the value is 2.84 . However there is a correlation between strips, so when this is taken into account a value of 2.99 is obtained.

Results

Residual pull of the resolution analysis

As a reference, a nonirradiated detector made of FZ with the same design than the $C Z$, had a resolution of $16 \mu \mathrm{~m}$.

So why is the resolution of the irradiated CZ detector as large as $42 \mu \mathrm{~m}$?

Conclusions

We tested an irradiated large-area silicon strip detector processed on Magnetic Czochralski silicon wafer using Helsinki Silicon Beam Telescope at CERN H2 area.

We verified that even after 1.6*1014 1 MeV neutron equivalent irradiation fluence and annealing 1 year at room temperature the detector detected particles.

Its S / N ratio was 3 , its resolution $42 \mu \mathrm{~m}$ and efficiency $\sim 29 \%$.

