Numerical simulation of radiation damage effects in p-type silicon detectors

Petasecca M.^{1,3}, Moscatelli F.^{1,2,3}, Scarpello C.¹, Passeri D.^{1,3}, Pignatel G.U.^{1,3}

¹DIEI - Università di Perugia, via G.Duranti,93 - Italy ²IMM-CNR sez.di Bologna, via Gobetti 101 – Italy ³INFN sez. Perugia – via Pascoli, 10 – Italy

6th RD50 Workshop

OUTLINE

- development of the radiation damage model for p-type silicon
- simulation of the Leakage Current and Depletion Voltage as a function of the Fluence
- simulation of the Charge Collection Efficiency (CCE) on irradiated silicon detectors as a function of the Fluence

Simulation tool:

ISE-TCAD – discrete time and space solution of drift/diffusion and continuity equations

Damage modelling:

- Deep levels: E_t , σ_n and σ_p
- SRH statistics
- Uniform density of defect concentration

Radiation damage Effects to simulate:

- -The increasing of the Leakage Current
- -The increasing of the Full Depletion Voltage
- -The decreasing of the Charge Collection Efficiency

Simulation setup

Simulated device structure and parameters:

- Doping profiles:
 - P doped substrates $(7 \times 10^{11} \text{ cm}^{-3}) \rightarrow 6 \text{k}\Omega \text{cm}$.
 - Charge concentration at the silicon-oxide interface of :
 - 4 ×10¹¹ cm⁻³ pre-irradiation
 - 1 ×10¹² cm⁻³ post-irradiation
- Optimized variable mesh definition
- Temperature = 300 K
- D (thickness) = 300 um

The p-type One-Level Radiation Damage Model

(*) [N. Zangenberg, et al., Nuc. Instr. And Meth B 186 (2002) 71-77] [M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) 588-594]

Level*	Ass.	σ _n [cm ⁻²] Experimental*	σ _p [cm ⁻²] Experimental*	σ _n [cm ⁻²]	**σ _p [cm ⁻²]	η [cm ⁻¹]
E _c -0.42eV	VV (-/0)	2·10 ⁻¹⁵	2·10 ⁻¹⁵	2-10-15	2-10-13	2.42

** 2 order of magnitude higher

β [cm⁻¹] simulated

3,72 ·10-3

β [cm⁻¹] experimental

4,0±0,4 ·10-3

The p-type One-Level Radiation Damage Model

(*) [N. Zangenberg, et al., Nuc. Instr. And Meth B 186 (2002) 71-77] [M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) 588-594]

Level*	Ass.	σ _n [cm ⁻²] Experimental*	σ _p [cm ⁻²] Experimental*	σ _n [cm ⁻²]	σ _p [cm ⁻²]	η [cm ⁻¹]
E _c -0.42eV	VV (-/0)	2·10 ⁻¹⁵	2·10 ⁻¹⁵	2·10 ⁻¹⁵	2·10 ⁻¹³	2.42

The p-type Two-Level Radiation Damage Model

[(**) Levels selected from: M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) 588-594 S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) 126-130]

Level**	Ass.	σ _n [cm ⁻²] Experimental	σ _p [cm ⁻²] Experimental	σ _n [cm ⁻²]	*σ _p [cm ⁻²]	η [cm ⁻¹]
E _c -0.42eV	VV (-/0)	2·10-15	2·10 ⁻¹⁵	2·10-15	2-10-14	1.613
E _c -0.46eV	VVV (-/0)	5·10 ⁻¹⁵	5·10 ⁻¹⁵	5·10 ⁻¹⁵	5·10 ⁻¹⁴	0.9

1 order of magnitude higher

β [cm⁻¹] simulated

3.98-10-3

β [cm⁻¹] experimental

4,0±0,4 ·10-3

The p-type Two-Level Radiation Damage Model

[(**) Levels selected from: M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) 588-594 S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) 126-130]

Level**	Ass.	σ _n [cm ⁻²] Experimental	σ _p [cm ⁻²] Experimental	σ _n [cm ⁻²]	*σ _p [cm ⁻²]	η [cm ⁻¹]
E _c -0.42eV	VV (-/0)	2·10-15	2·10 ⁻¹⁵	2·10-15	2·10-14	1.613
E _c -0.46eV	VVV (-/0)	5·10 ⁻¹⁵	5·10 ⁻¹⁵	5·10 ⁻¹⁵	5·10-14	0.9

α [A/cm]
simulated
3.75·10⁻¹⁷
α [A/cm]
reported (*)
4,0±0,1 ·10⁻¹⁷

The p-type Three-Level Radiation Damage Model:

no improvement for the Vdep and Leackage Current due to the donor defect level

Level	Ass.	σ _n [cm ⁻²] Experimental	σ _p [cm ⁻²] Experimental	σ _n [cm ⁻²]	*o _p [cm ⁻²]	η [cm ⁻¹]
E _c -0.42eV	VV (-/0)	2·10 ⁻¹⁵	2·10 ⁻¹⁵	2·10 ⁻¹⁵	2:10-14	1.613
E _c -0.46eV	VVV (-/0)	5·10 ⁻¹⁵	5·10 ⁻¹⁵	5·10 ⁻¹⁵	5·10 ⁻¹⁴	0.9
E _v +0.36eV	? C ₁ O ₁ ?	2.5·10 ⁻¹⁴	2.5·10 ⁻¹⁵	2.5·10 ⁻¹⁴	2.5·10 ⁻¹⁵	0.9

* 1 order of magnitude higher

Measures extracted from [M. Lozano, et al., RD50 workshop, Firenze, Oct 2004]

β [cm⁻¹] simulated

β [cm⁻¹] experimental 4,0±0,4 ·10⁻³

α [A/cm] experimental α [A/cm] simulated $4\pm0,11\cdot10^{-17}$ $3.75\cdot10^{-17}$

CCE Simulation

$$Q = \int I(t)dt$$

MIP: 80 e-h pairs/ μ m cylinder diameter = 2μ m

CCE Simulation

The Ricombination implemented in DESSIS simulator is based on a model called Scharfetter/Auger Trapped Assisted

$$\begin{cases} R^{SRH} = \frac{np - n_{i,eff}^{2}}{\frac{\tau_{p}^{SRH}}{1 + \frac{\tau_{p}^{SRH}}{\tau_{p}^{TAA}}}} \binom{n + n_{i,eff}^{2} e^{\frac{E_{inap}}{kT}}}{1 + \frac{\tau_{n}^{SRH}}{\tau_{n}^{TAA}}} \binom{p + p_{i,eff}^{2} e^{\frac{E_{inap}}{kT}}}{1 + \frac{\tau_{n}^{SRH}}{\tau_{n}^{TAA}}} \binom{p + p_{i,eff}^{2} e^{\frac{E_{inap}}{kT}}}{1 + \frac{\tau_{n}^{SRH}}{\tau_{n}^{TAA}}}$$

$$\begin{cases} \tau_{op}^{SRH} = \tau_{op} F(T, E) \\ \tau_{op}^{SRH} = \tau_{op}^{TAA} = \tau_{op}^{TAA} + \frac{\tau_{op}^{TAA}}{\tau_{n/p}^{TAA}} + \frac{\tau_{op}^{TAA}}{\tau_{n/p}^{TAA}} + \frac{\tau_{op}^{TAA}}{\tau_{op}^{TAA}} + \frac{\tau_{op}^{TAA}}{\tau_{op$$

change the c_{n/p}TAA parameters in order to obtain the correct value of the recombination time for high resistivity substrates

$$\frac{1}{ au_{\it eff}} = eta_{\it e/h} \cdot \Phi_{\it eq}$$
 where

From RD50 status Report (2004):

β _e [10 ⁻¹⁶ cm ² /ns]	β _h [10 ⁻¹⁶ cm ² /ns]			
5.16 + 0.16	5.04 + 0.16			

CCE vs Fluence for p-type silicon device

Simulation data well reproduce experimental* measure:

* Measurements from Casse et al. NIMA 535 (2004)

Simulations obtained using the **three-level radiation damage model**:

the donor defect level allows to reduce numerical convergence problems of the transient simulations.

Expected CCE at a fluence of 1.10¹⁶ n/cm² is <4200 (probably over-estimated) e-h pairs!

Conclusions

- Irradiated diodes have been analyzed considering a three levels simulation model for p-type Si substrates:
 - The two-level model for the p-type fits experimental data for the Leakage Current and Full Depletion Voltage
 - The C_iO_i donor level for p-type silicon seems to be uninfluential (at Room Temperature) to simulate the leackage current and the full depletion voltage as a function of the fluence, but has an important function for the transient simulations stability (CCE simulation).
 - The three-level for p-type fits CCE experimental data for fluences up to 4.85⋅10¹⁵ n/cm² at the full depletion voltage.
- Next step is to develop a technique to solve the problems to simulate the CCE vs BIAS voltage (up to 1·10¹⁶n/cm²) for p and n type Si substrates partially undepleted.