

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

P.O. Box 20, FIN-53851 Lappeenranta, FINLAND | Skinnarilankatu 34, 53850 Lappeenranta, FINLAND Tel. +358 5 62 111 Fax +358 5 621 2350

www.lut.fi

2D simulation of n-on-p strip detectors with different p-stop and p-spray structures

Tanja Palviainen Lappeenranta University of Technology Laboratory of Microelectronics

in collaboration with

Helsinki Institute of Physics, CERN, Geneva, Switzerland Ioffe Physico-Technical Institute of Russian Academy of Sciences, St.Petersburg, Russia Brookhaven National Laboratory, Upton, NY, USA

Outline

- Motivation
- Benefits of n-on-p strip detector structure
- The Layout of the n+/p-/p+ strip detector
- Problems of the p-type detectors
- P-spray and p-stop implant
- Simulations done by Silvaco VWF
- Simulation of n-on-p strip detector
- Simulation problems to overcome
- Summary and future work

Motivation

- It has been shown that the charge collection in silicon strip detectors is effected by the properties of the surface in the inter-strip gap [*V. Eremin et al., NIM, A500, (2003) 121*].
- For device and material characterization and development of radiation hard detectors it is essential to investigate some special constructions of detectors for evaluating or even eliminating this effect.
- One of the constructions is an n-on-p strip detector.

Benefits of n-on-p strip detector structure

• The strips collect electrons

 \rightarrow the charge loss problem is less effected because electron mobility is three times that of holes

 \rightarrow trapping drops to one third

The layout of the n+/p-/p+ strip detector The layout: Jaakko Härkönen, HIP white = Phosphorus red = BoronATLAS Data from NonPdiode 03.str 80 120 Aicron 160 Net Doping (/cm3) 19.5 200 18.8 18 17.3 16.5 240 15.8 15 14.3 LAPPEENRANTA 13.5 12.8 UNIVERSITY OF TECHNOLOGY 280 600 1000 2000 n 200 400 800 1200 1400 1600 1800 Microns

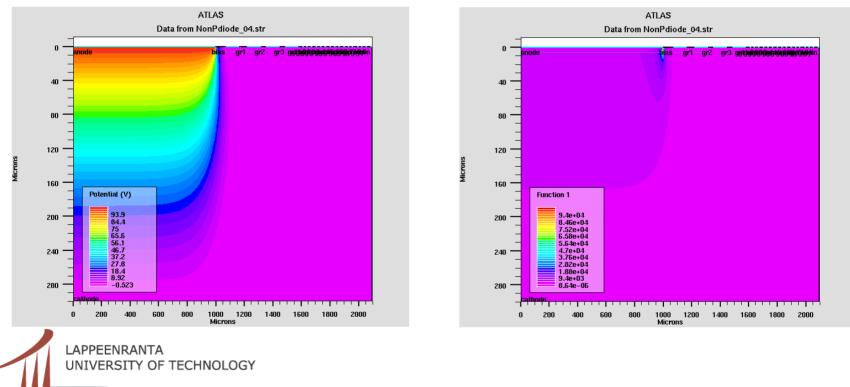
Problems of the p-type detectors

- Larger leakage current
- Surface inversion

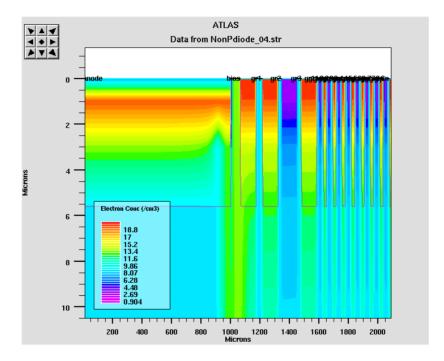
→ Reducing surface inversion can be done with two methods: using p-spray implant, or using pstop implant

P-spray and p-stop implant

- In case of p-spray implant: the whole wafer surface is doped with a small amount of boron
- In case of p-stop implant: the big dose of boron is doped to the area separated by mask level.
- In this design of n-on-p strip detector the combined p-stop structure [*Unno Y. et al. IEEE Transactions on Nuclear Science, vol. 45, no. 3, June 1998*] is used where each n-strip region is splitted into a cell with a narrow p-implant line and placed the individual p-stop frame within the cell.


Simulations done by Silvaco VWF

- The computer simulations of the n-on-p strip detector are done using Silvaco Virtual Wafer Fab (VWF) software.
- VWF software is a simulation tool for electronic design.
- It includes different kind of tools for device and process simulation (atlas and athena).
- Silvaco is a physically based simulator, which predicts the electrical characteristics associated with specified physical structures and conditions.



Simulation of n-on-p strip detector

n-on-p strip detector structure is under simulation
 → these results are the first ones and not correct!

Simulation of n-on-p strip detector

MORE DETAILED ANALYSIS IS NEEDED!

Simulation problems to overcome

- Include parameters for trap states
- Define oxide charge
- Investigate if the simulation of dynamical response is possible

Summary and future work

- Simulations are in process
 → big amount of work still to be done
- Develope structure model for simulation
- Include parameters
- Confirm results with measurements

Thank you for your attention!

