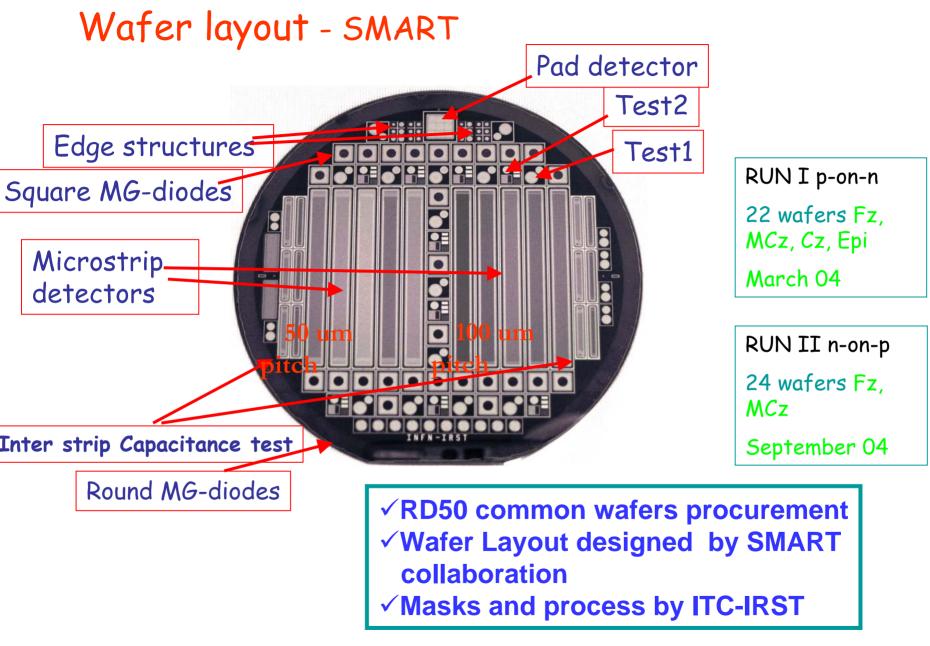
Irradiation of Fz and MCz mini-sensors of n and p-type with 24 GeV/c and 26 MeV/c protons up to fluences of 3 10¹⁵ 1MeV n/cm²

D.Creanza, M.De Palma, N.Manna, V.Radicci Università di Bari & INFN Bari A. Macchiolo Università di Firenze & INFN Firenze L. Borrello, A.Messineo, G. Segneri, D.Sentenac Università di Pisa & INFN Pisa


SMART Collaboration

Thanks to: M.Glaser (CERN) & A.Furgeri (Karlsruhe)

Helsinki 2-4 June 2005

Talk outline

- The SMART RUN I & II
 - Layout and materials
- Process and Pre-irradiation qualification
- Irradiation
- Studies on mini-sensors
 - Preliminary results on
 - Electrical performances
 - Detector properties
- Conclusion

Helsinki 2-4 June 2005

Mini-sensors design features IMPIANTO Ossido **NIN** Ossido TEOS Mitra arc pitch (μ m) p+ width (μ m) Poly width (µm) Metal width (µm) u-strip# **S1** 50 15 10 23 **S2** 50 20 15 28 **S**3 50 25 20 33 **S4** 50 15 10 19 **S**5 50 15 27 10 **S6** 100 15 10 23 **S7** 25 20 33 100 **S8** 100 35 30 43 **S9** 25 20 37 100 **S10** 100 25 20 41

Mini-sensor active area=0.32 x 4.5 cm²

- a) Pitches 50, 100 μ m to match active thickness (EPI) and for a low occupancy level
- b) Strips length ~45 mm to exploit tracking detector performances (noise)
- Implants geometry to investigate leakage current level, breakdown performances and capacitance effects

Material under investigation

p-on-n MCz <100> ρ > 500 Ω cm

standard process no LTO, sintering @ 380 °C no LTO, sintering @ 350 °C no LTO, sintering @ 380 °C + TD killing RUN I

W364 W115,W130,W164,W91 W179 W160,W127

n-on-p MCz, no OG <100> ρ > 1.8 K Ω cm RUN II

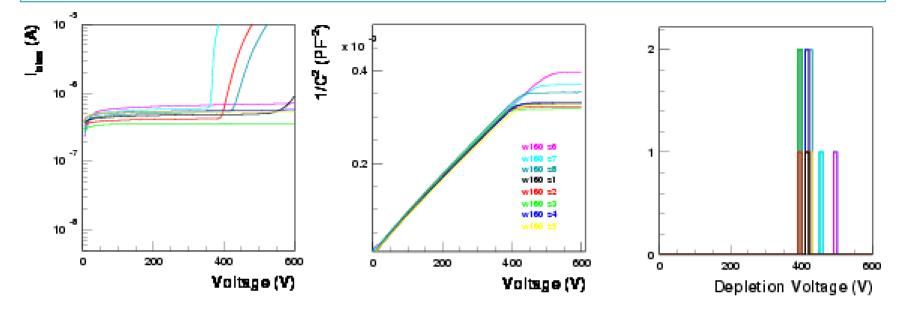
low dose p-spray 3E+12 cm ⁻² high-dose p-spray 5E+12 cm ⁻² W66,W9,W102,W14 W182,W64,W130,W84, W6,W253,W248

Fz reference samples n-type <111> RUN I

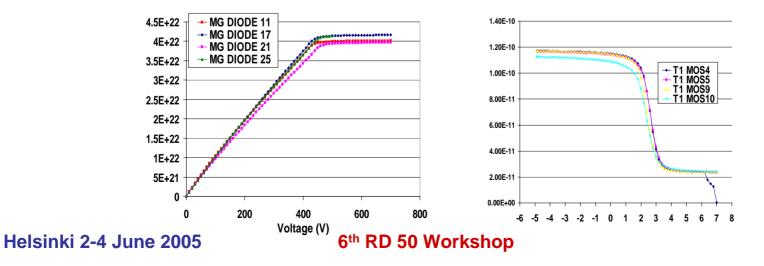
p-type (passivated) RUN II

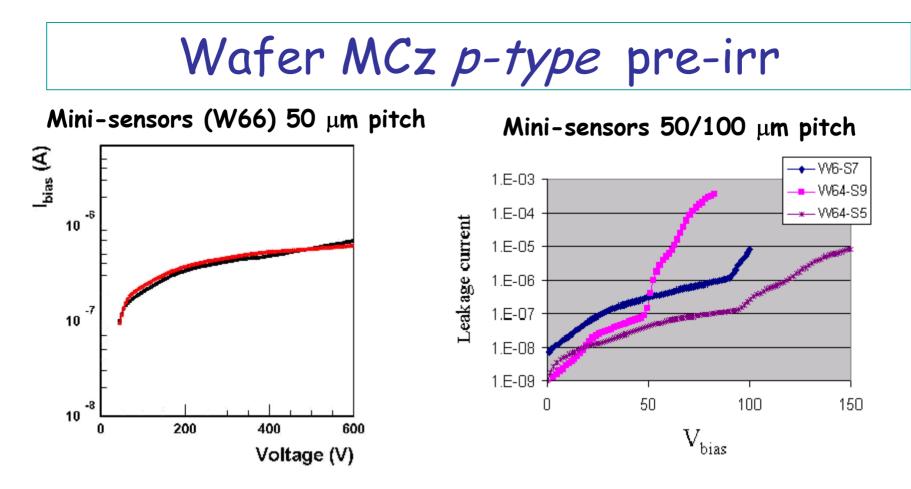
W1253,W1254 (std) , W1255 (T=380 C) W14 (low dose p-spray), W37 (high dose p-spray)

Helsinki 2-4 June 2005


•

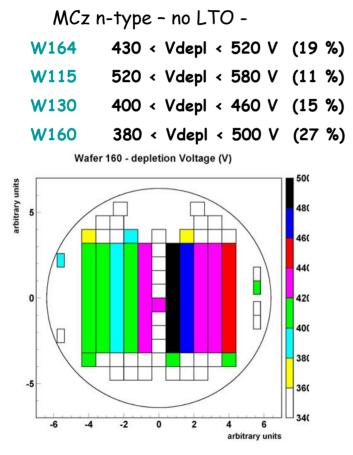
٠

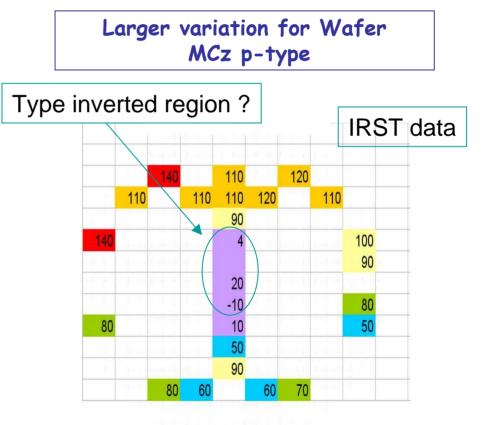

Pre irradiation measurement


- Bulk current & Depletion voltage
 - Diodes & Mini-sensors
- Strip capacitive load
 - Capts & Mini-sensors
- Surface current - GCD (Metal, Poly)
- Oxide trapped charge – MOS

Wafer MCz *n-type* pre-irr: typical performance

Measurement on test structures in agreement with sensors properties




MCz and Fz p-type mini-sensors of 100 μm pitch may show an early breakdown before irradiation:

Preliminary investigations suggest that the problem can be related with p-spray deposition: no special mask has been used to diffuse it

Wafer resistivity

Diode CV measurements show a variation of the bulk resistivity both in n- and ptype MCz wafers with a depletion voltage spread for the mini-sensors.

Thermal Donor activation, see talk of D.Menichelli

6th RD 50 Workshop

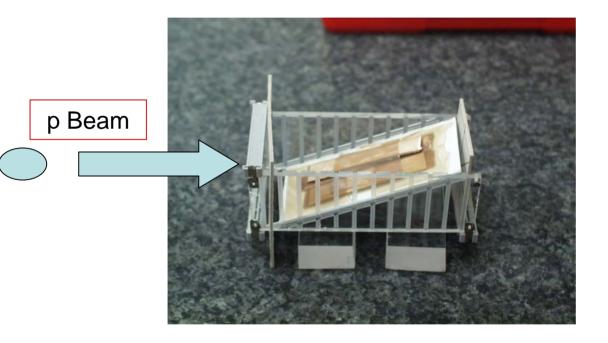
Helsinki 2-4 June 2005

Irradiation campaign

- CERN OCT 04 : 24 GeV/c Protons
 - **K factor ~ 0.62**
- Karlsruhe May 05 : 26 MeV/c Protons
 K factor ~ 3.0
- Irradiation performed on diodes & test structures* and Mini-sensors

*(result reported on the D.Creanza Talk this workshop)

Helsinki 2-4 June 2005


Cern Irradiation (Oct04)

	FZ	MC	z 380 nol	z 380 no	LTO		MCz	MCz		FZ	
fluence (p)			TD killing				lo	ow p-spr	agh p-spra	w p-spra	gh p-spra
			160	130	164		364		182		
5.56E+15			S10,S5	S 9	S4,S10		S 5		S4,S2		
	1255		160	130	164	115	364	66		14	37
4.43E+14	<mark>\$</mark> 3		S9	S7	S5,S6	S 3	S1	S1		S1	S1
	1255	1254	160	130	164	115	364	66			37
9.63E+13	<mark>S1</mark>	S9	S1	S2	S 3	S4	S2	S2			S4

75 % n-type 25 % p-type

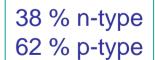
- About 90 diodes and a few test structures irradiated
- Fluences range : 6 10¹³ 3.4 10¹⁵ 1 MeV neutr. eq./cm²

CERN Irradiation set-up

Diodes and test-structures T1, T2 and T3 have been placed orthogonally to the beam direction

Mini-sensors have been placed with an inclination of about 26° to be irradiated uniformely by the beam (section = 2×2 cm²)

active area= $0.32 \times 4.5 \text{ cm}^2$


Non uniform damage on mini-sensors, effect seen at the strips level

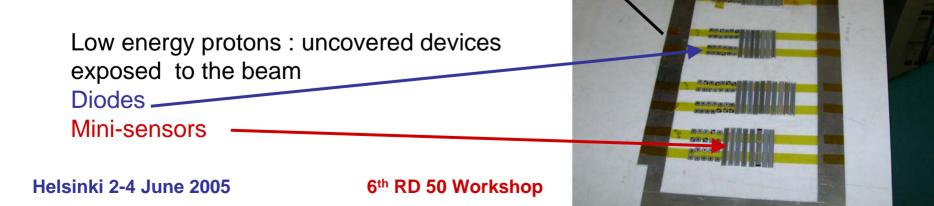
Helsinki 2-4 June 2005

Irradiation in Karlsruhe (May05)

n-type	Fz	n-type N	ICz	p-type M	Cz		
Fi2 = 6*10^13	Fi3 = 1*10^14	Fi4 = 2*10^14	Fi5 = 3*10^14	Fi6 = 4*10^14	Fi7 = 6*10^14	Fi8 = 8*10^14	Fi9 = 1*10^15
5.6 10e13	1.04 10e14	1.76 10e14	3.09 10e14	3.87 10e14	5.9 10e14	7.92 10e14	1 10e15
W1253 -s1	W1253 -s2	W1253 - s3	W84 - s2	W1253 - s7	W1253 - s7	W127 - s9	W127 - s10
W127 - s1	W127 - s2	W127 - s3		W91 - s7	W91 - s7	W91 - s9	W64 - s6
W91 - s1	W91 - s2	w179 - s3		w64 - s8	w64 - s8	w64 - s10	<mark>w6 - s9</mark>
w179 - s1	w179 - s2	W64 - s3		W9 - s8	W9 - s8	W9 - s10	W9 - s9
W64 - s1	W64 - s2	W6 - s3		W130 - s8	W130 - s8	W24 - s3	W130 - s9
W9 -s1	W64 - s9	W9 - s3		W248 - s3	W102 - s2	W160 - s2	W102 - s3
W130 - s2	W9 - s2	W130 - s4		W84 - s3	W14 - s4	W84 - s6	W66 - s4
W84 - s1	W130 - s3				W160 - s3		W160 - s4
	W248 - s1	W102 - s4			W248 - s5		W84 - s7
		W1255 - s8			W84 - s4		
		W160 - s8					
		W248 - s2					
		W84 - s1					
		<mark>W187 - s2</mark>					
		<mark>W187 - s4</mark>					
		W253 - s2					
		W253 - s4					

• About **100 diodes** and a few test structures irradiated

• Fluences range : $1.8 \ 10^{14}$ - $3 \ 10^{15}$ 1 MeV neutr. eq./cm²

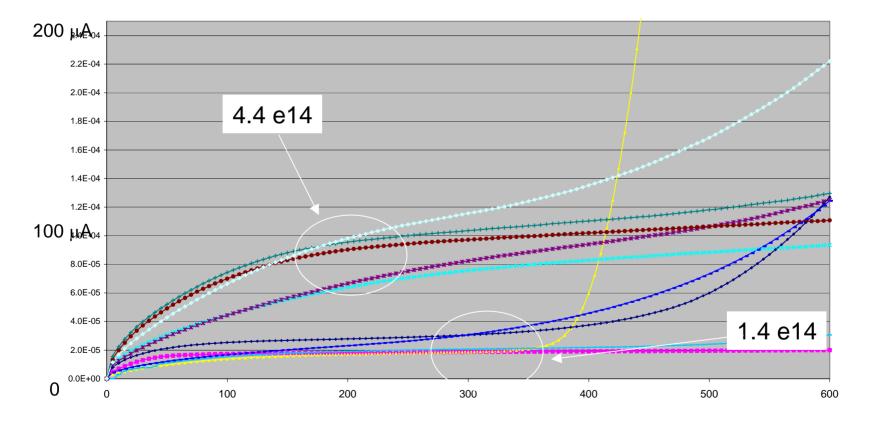

Helsinki 2-4 June 2005

Karlsruhe

Irradiation set-up

Box is moving to scan the whole relevant area

Preliminary results on mini-sensors

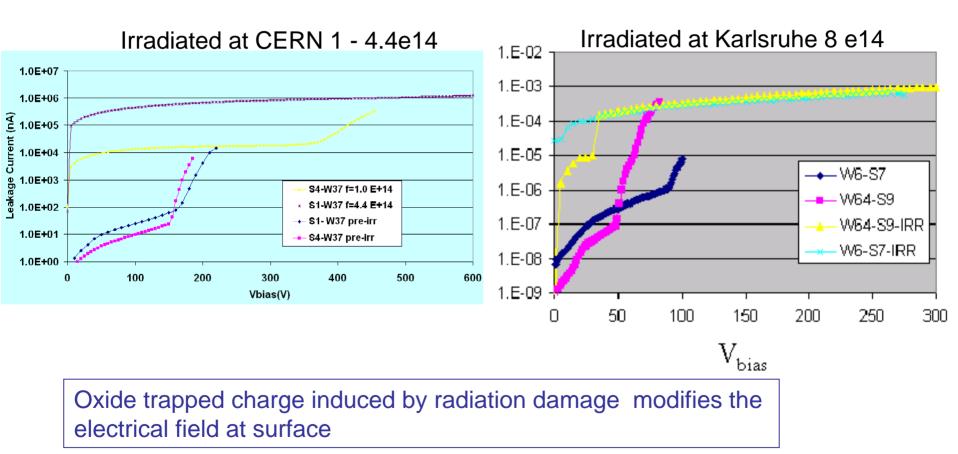

- 1. Leakage current
- 2. Neff annealing
- 3. Inter-strip capacitance
- Device Measurements performed in:
 - Firenze & Pisa at low temperature
 - Bari at room temperature
- All laboratories have a set of dedicated instruments for semiconductor measurements

(Vbias up to 1 KV, LCR 20Hz – 1 MHz, Pico Ammeter)

CERN Irradiation: leakage current

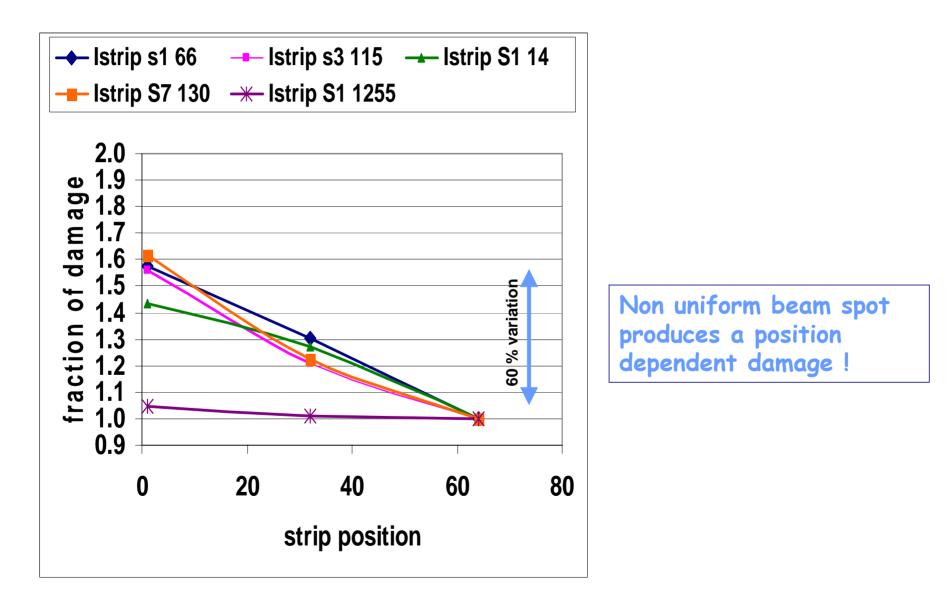
IV of n-type and p-type, measured at 0 °C, no annealing performed

		Minisensors IV		
 s2-66 MCz(p) f3	s4-w37 MCz(p) f3			
 s1-w1255 Fz(n) f3	→s3-w115 MCz(n) f3		s1-w160 MCz(n) f3	s7-w130 MCz(n) f2

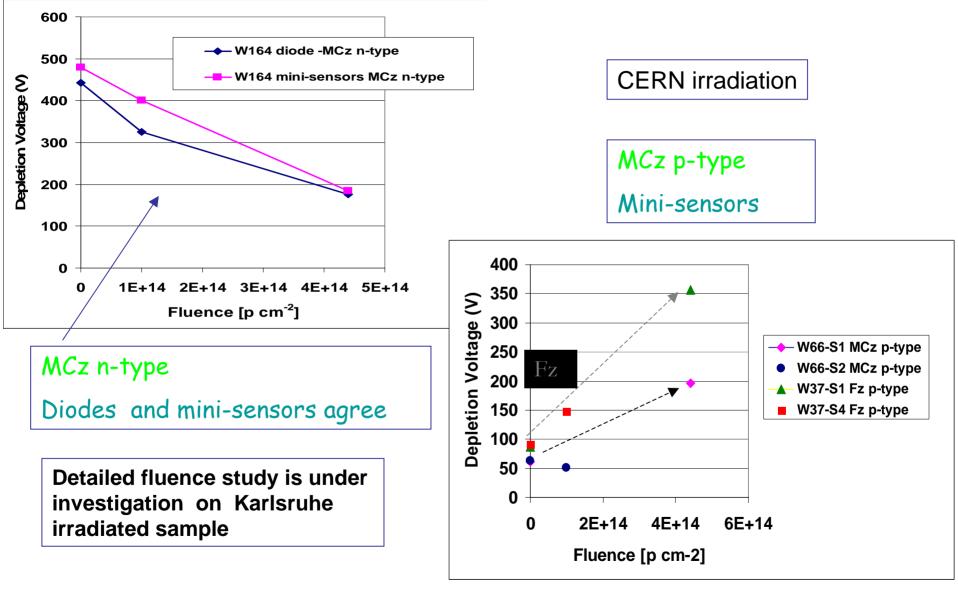


Helsinki 2-4 June 2005

CERN Irradiation: breakdown performance


n-on-p mini-sensors with High p-spray 3e15/cm2

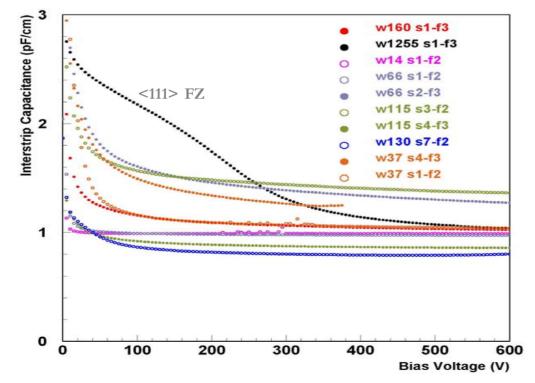
After irradiation Breakdown voltage improves



Helsinki 2-4 June 2005

CERN irradiation: mini-sensors strip leakage current

Variation of the depletion voltage with fluence



Inter-strip capacitance on mini-sensors

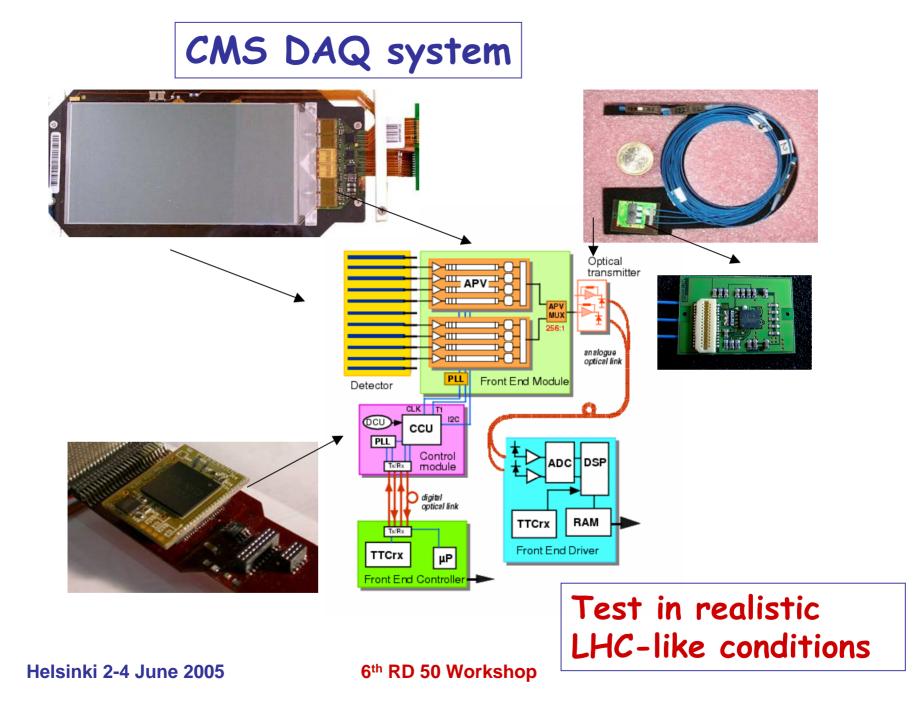
 50 μm pitch
 100 μm pitch

 Pre-irradiated
 n-type ~ 0.8 pF/cm
 0.6 pF/cm

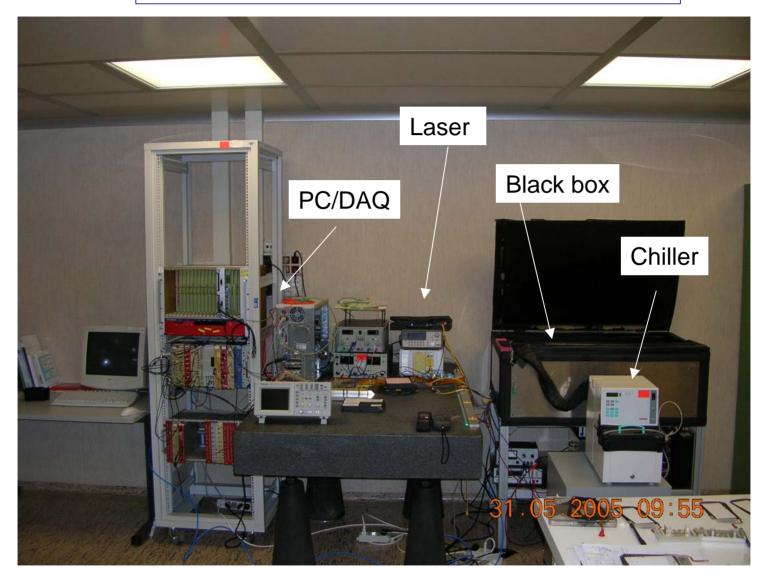
 MCZ p and n-type
 ϕ = 1-4.4 E+14 p cm⁻² ~ 1.5-1.7 pF/cm
 0.9-1.2 pF/cm

 $f_3 = 1.0 E+14 p cm^{-2}$ $f_2 = 4.4 E+14 p cm^{-2}$

C-int decreases for the p-type sensors at increasing fluences.

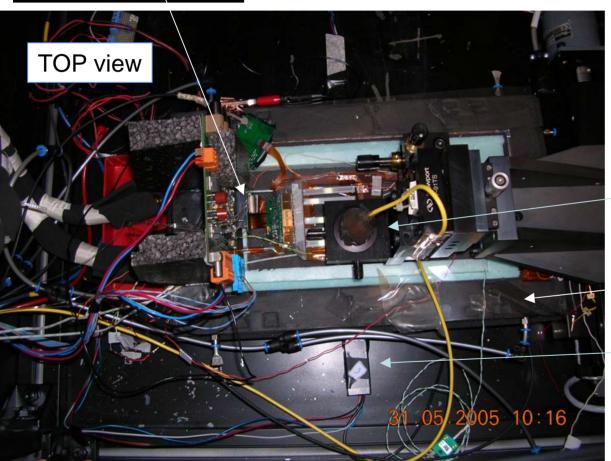

The opposite behavior for the n-type sensors.

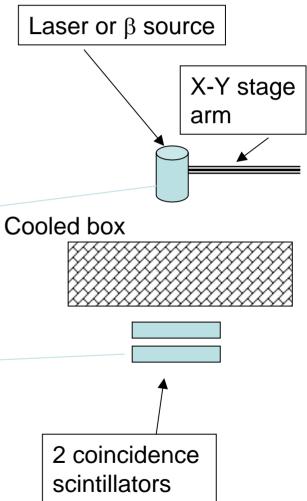
Helsinki 2-4 June 2005


Measurement on detectors

- A few mini sensors assembled in detector unit
 - Main facility from CMS tracker (Pisa)
 - Front end electronics
 - DAQ system LHC like
- Detector performance with laser system

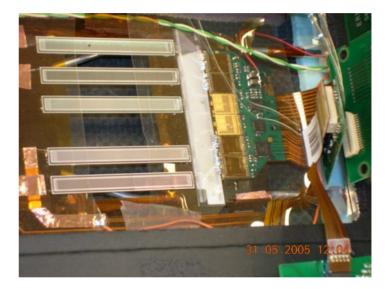
• Single particle detection study with β source


Test stand with Laser and β source



Helsinki 2-4 June 2005

Cross-section view



Helsinki 2-4 June 2005

FE + read-out elect.

Mini-Sensors assembled

 $\begin{array}{l} \textbf{MCz (n-type)} \\ \textbf{130 s7 irradiated at 4.4e14 at CERN} \\ \textbf{\alpha}_0 \sim \textbf{6.3E-17 (no annealing)} \\ \textbf{V}_{depl} \text{ pre-irr. } 441 \text{ V} \\ \textbf{V}_{depl} \text{ after irr. } 230 \text{ V} \end{array}$

MCz(n-type)

130 s5 V_{depl} pre-irr. 405 V

160 s7 V_{depl} **pre-irr. 441 V** Reference Fz (n-type)

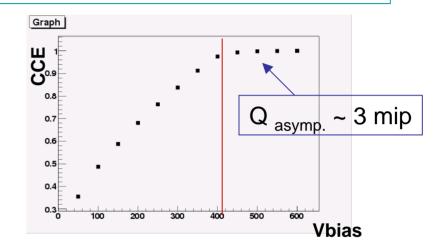
1255 s4 V_{depl} pre-irr. 43V

Helsinki 2-4 June 2005

Laser test set-up

- RD50 Laser 1060 nm (Maurice)
- Beam splitter (reduces 1/3 + db attenuation)
- Pulsed with Agilent Waveform Generator 33250A(80 MHz) 1V Vpp with an output of ~4 ns laser pulse
- Laser spot focused on the detector
- DAQ:
 - 1 Laser event followed by 10 random trigger
 - DAQ average rate 1.1KHz

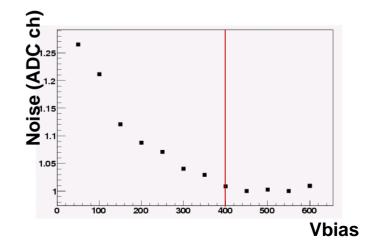
Helsinki 2-4 June 2005


β test set-up

- DAQ system configured in *peak mode* :
 - sensitive to the maximum charge and with a lower noise level
- Measurement performed:
 - at over-depletion for not irradiated detectors
 - up to V_{depl} for the irradiated one
- Conditions:
 - not irradiated detectors at room T
 - irradiated detectors at low T (3 °C)

MCz(n) Laser spectra results

MCz(n) 130 s5 not irradiated V_{depl} ~405 V


Laser point to the mid gap between strips
Reconstructed cluster with, in average, 2 strips involved

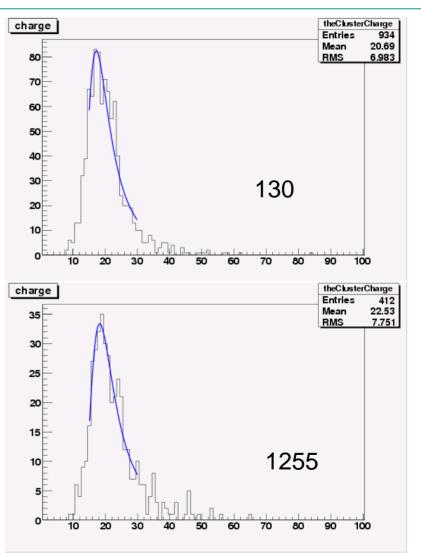
Full collected Charge at depletion voltage

Similar conclusion for Fz ref. sample

Good Noise figure: Cluster noise ~1

Helsinki 2-4 June 2005

MCz(n) β spectra results

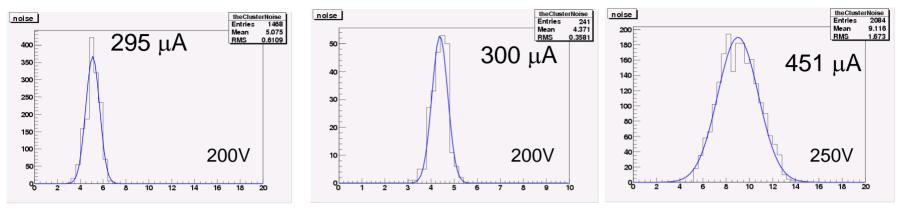

Not irradiated sensors 130 MCz(n) 1255 Fz(n)

Landau plots show good performance of mini-sensors as particle detectors

130-s5 500 V Q 17.8 <u>+</u> 0.2 noise 1.02

1255-s4 200 V Q 18.8 <u>+</u> 0.3 noise 0.98

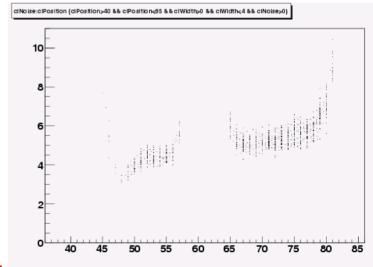
Noise is a bit higher that expected s/n at level of 17-19


Helsinki 2-4 June 2005

Irradiated sensors

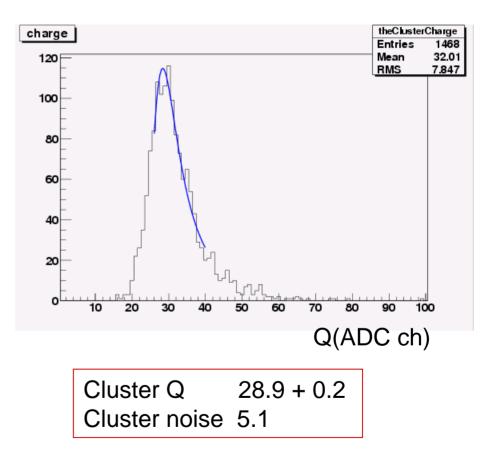
- Cooling system with low efficiency
 - Measurement performed in dry atmosphere at 3°C
- Sensors irradiated at 4.4 e14 CERN protons

Measurement performed up to V_{depl}
 – High current affects charge and noise figure


Noise study results

Current DA	Nose (ADC ch)
295	4.371
300	5.073
451	9.116

Noise grows with dark current: main contribution


Noise vs strip damage: non uniform Irradiation beam spot (CERN)

Helsinki 2-4 June 2005

130-s7 irradiated 200 V

- $V_{bias} = 200 V$
- Charge distribution show Landau shape but noise plays a relevant role :
 - lower T needed
 - clustering algorithm should be optimized
 - tuning of analysis tools

Conclusion

- Pre-irradiation
- 1. MCz p-type wafers have a large resistivity spread: critical feature for detector processing.
- 2. The performance of p-type mini-sensors need additional masks to implant the p-stop.
- 3. The n-type MCz mini-sensors perform comparably to the Fz ones.
- After-irradiation
- 1. p-type mini-sensors with high p-spray show an improved IV after irradiation.
- 2. Fairly good overall performance of irradiated minisensors with good inter-strip capacitance.

Helsinki 2-4 June 2005

Conclusion

• Detector measurement

- 1. Laser & β source system equipped and operational
 - i. Preliminary results are satisfactory
 - ii. Not irradiated MCz(n) detectors showed good performance, similar to reference sample
- 2. Irradiated detector shows understood figure on noise
- 3. Acceptable charge collection at V_{depl}
- 4. Technical improvements and systematic study are needed

Acknowledgement

- Special thanks to colleagues in CMS experts on DAQ/data analysis : S.Dutta, M.Dalfonso;
- And for the technical support provided by: A.Profeti,L.Zaccarelli.