I-V & CCE Characterisation of Proton Irradiated 12 Micron Epitaxial GaN Detectors

J.Grant¹, R.Bates¹, A.Blue¹, W. Cunningham¹, J.Vaitkus², E.Gaubas², V.O'Shea¹

(1) Dept. of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland

UNIVERSITY (2) Institute of Materials Science and Applied Research, Vilnius of University, Sauletekio al. 9 -lll, 2040, Vilnius, Lithuania

Outline

- > Status of GaN as a radiation hard material
- ➤ New material + fabrication into detectors
- ➤ Material characterisation
 - I-V & CCE measurements
- > CCE experimental set-up
- ➤ I-V & CCE results
- ➤ Conclusions & future work

Status of GaN

- SI GaN grown by MOCVD
- Epitaxial layer 2.5µm thick

Fluence (n/p/pions/x-rays)	Max CCE (%)	Voltage @ Max CCE
unirradiated	90	30V
600Mrad X-Rays	90	30V
10 ¹⁴ n	79	30V
10 ¹⁵ n	7	22V
10^{16} n	4	15V
10^{16} p	13	50V

[1] A.Blue(4th RD50Workshop)

- ➤ Increase statistics i.e. fabricate and irradiate more GaN detectors
- ➤ Need thicker material to increase amount of charge generated and (hopefully!!) collected.

New Material

- Non doped n-type GaN epilayer of 12 micron thickness grown by MOCVD on sapphire using n-GaN buffer (Lumilog Ltd.) 1 wafer (2inch)
- Non doped n-type GaN epilayer of 2.5 micron thickness grown by MOCVD on sapphire using n-GaN buffer (Tokushima University) 3 wafers (2inch)

Detector Fabrication

- Fabricated pad/guard ring structures using photolithographic techniques
- > Samples 10mm by 5mm. Two Pad/guard ring structures per sample.
- Pad 1mm diameter. 50μm spacing between pad and guard ring. Guard ring 500μm thick
- Deposited 200nm Pd to make Schottky contact. 200nm Au on top of this to make bonding easier.
- > Somehow needed to make a contact with buffer layer.
- ➤ Coated side of material with silver paint.

Detector Characterisation

- > Detectors characterised pre- and post- irradiated by performing
 - I-V measurements using a Keithley 237 measurement unit
 - CCE measurements using 5.48MeV α particles from an ²⁴¹Am source
- Detectors left in dark for ~ 2hours before performing I-V's.

CCE Measurement

- ➤ Calibrate set-up using a Si detector assumed to have 100% CCE
- From observed spectrum (below left) the energy of the α particles emitted from our americium source is taken to be 3.82MeV
- From the triangle Then use SRIM simulation (below right) to calculate the amount of energy that should be deposited by an α particle with incident energy of 3.82MeV in 12μm of GaN.
- Found to be 3.707MeV

Irradiations Performed

- ➤ Detectors irradiated with 24GeV/c protons at CERN
- \triangleright 5 samples from each wafer = 20 samples irradiated.
- > Detectors irradiated to fluences:
 - $-1 \times 10^{14} \text{p/cm}^2$
 - $-1 \times 10^{15} \text{p/cm}^2$
 - $-2 \times 10^{15} \text{p/cm}^2$
 - $-5 \text{ x} 10^{15} \text{p/cm}^2$
 - $-1 \times 10^{16} \text{p/cm}^2$
- ➤ Detectors stored at -20°C after irradiation
- > I-V/CCE Characterisation of 12μm epitaxial GaN done first

I-V's of p Irradiated 12μm GaN

- ➤ Detectors show Ohmic/Schottky behaviour
- Following slide shows I-V curves for –ve bias in more depth

I-V curves (-ve Bias only)

-ve Bias applied

CCE Spectra

➤ Spectra from an unirradiated detector shown on the left and from the detector irradiated to 5e¹⁵p/cm² on the right

CCE Plots

Comparison

Material	D (µm)	Fluence (n/p/pions/cm ²)	CCE _{ma} _x (%)	V@CCE _{max}
SiC [1]	100	unirradiated	60	650V
SiC [1]	100	10 ¹³ pions	50	600V
FZ Si [2]	50	4.5x10 ¹⁴ 1MeV n/cm ²	100	75V
FZ Si [2]	50	8.1x10 ¹⁴ 1MeV n/cm ²	100	200V
GaN	12	unirradiated	55	130V
GaN	12	1016p/cm2	25	320V

- [1] W.Cunningham et al. (4th RD50 workshop, CERN)
- [2] M. Bruzzi et al. (5th RD50 workshop, Florence)

Conclusions + Future Work

- Fabricated detectors on 12μm epitaxial GaN
- ➤ Unirradiated detector shows a CCE of ~55%
- ➤ After irradiation to 10¹⁶p/cm² CCE drops to ~26 %

- For the future: Irradiate some 12μm epitaxial GaN with neutrons (also irradiate some 2.5μm epitaxial GaN detectors) at varying fluences.
- > ICP etching of 12μm epitaxial GaN. Make a 'proper' contact to the buffer layer