

Nick Brook

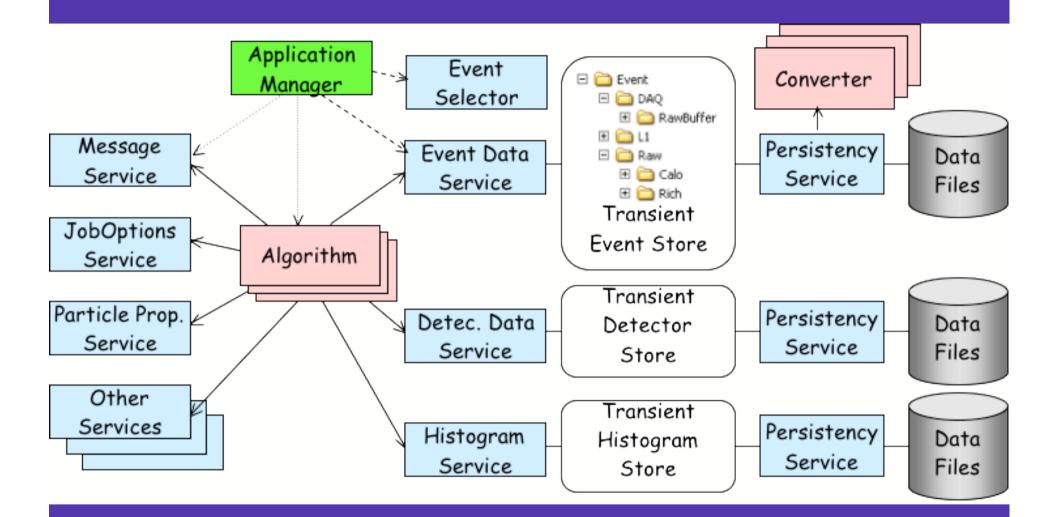
- Organisation
- LHCb software
- Distributed Computing
- Computing Model
- LHCb & LCG
- Milestones

Organisation

Software framework & distributed computing

- provision of the software framework
 - Core s/w, conditions DB, s/w engineering, ...
- tools for distributed computing
 - Production system, user analysis interface, ...

<u>Computing Resource</u>

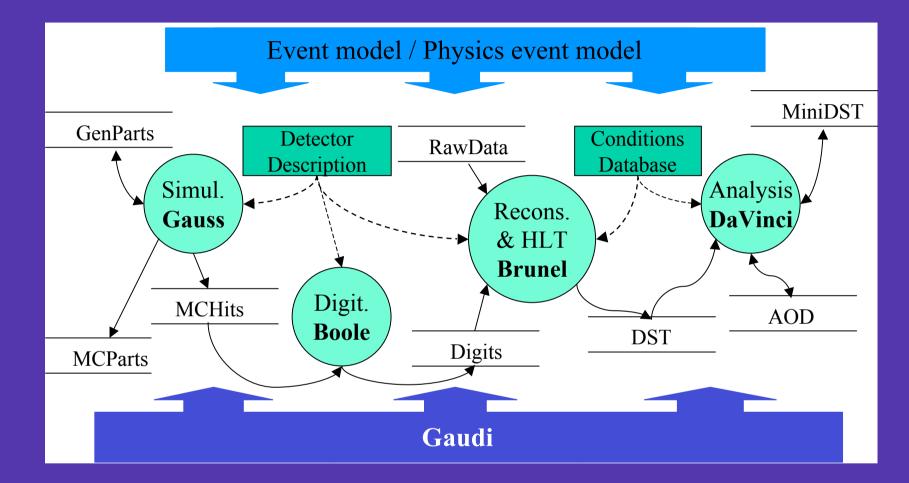

- coordination of the computing resources
- organisation of the event processing of both real and simulated data

Physics Applications

- integration of algorithms (both global and sub-system specific) in the software framework
- global reconstruction algorithms that will run in the online & offline environment
- coordination of the sub-detector software

LHCb software framework

Object diagram of the Gaudi architecture



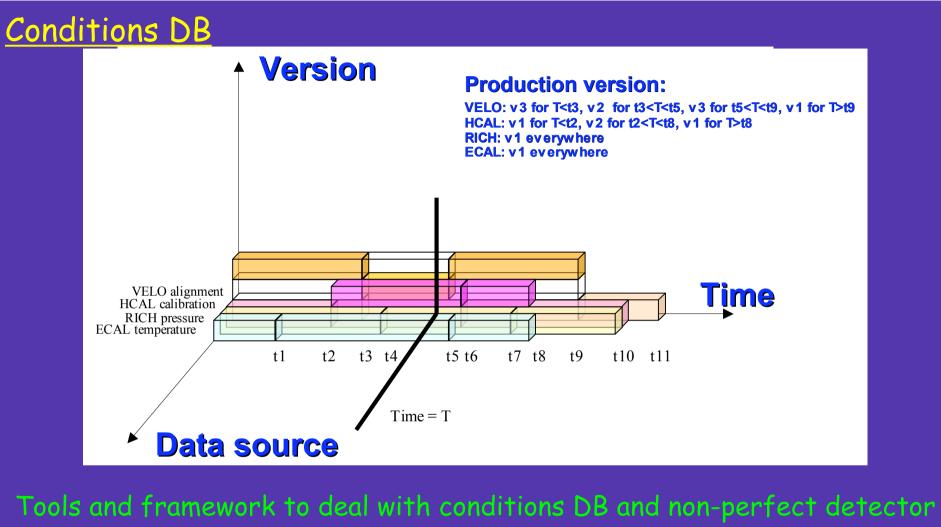
LHCb software framework

- Gaudi is architecture-centric, requirements-driven framework
 - Adopted by ATLAS; used by GLAST & HARP
 - Same framework used both online & offline
- algorithmic part of data processing as a set of OO objects
 - decoupling between the objects describing the data and the algorithms allows programmers to concentrate separately on both.
 - allows a longer stability for the data objects (the LHCb event model) as algorithms evolve much more rapidly
- An important design choice has been to distinguish between a transient and a persistent representation of the data objects
 - changed from ZEBRA to ROOT to LCG POOL without the algorithms being affected.
- Event Model classes only contain enough basic internal functionality for giving algorithms access to their content and derived information
 - Algorithms and tools perform the actual data transformations

LHCb software

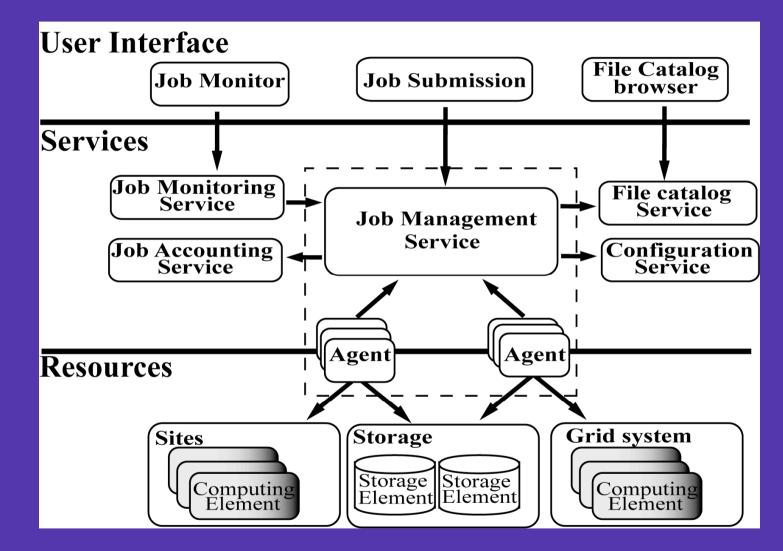
LHCb data processing applications and data flow

LHCb software


- Each application is a producer and/or consumer of data for the other applications
- The applications are all based on the Gaudi framework
 - communicate via the LHCb Event model and make use of the LHCb unique Detector Description
 - ensures consistency between the applications and allows algorithms to migrate from one application to another as necessary
- subdivision between the different applications has been driven by their different scopes as well as CPU consumption and repetitiveness of the tasks performed

Event sizes & processing requirements

	Aim	Current	
Event Size	kB		
RAW	25	35	
rDST	25	8	
DST	75	58	
Event processing	kSI2k.s per event		
Reconstruction	2.4	2.7	
Stripping	0.2	0.6	
Analysis	0,3	??	
Simulation (bb-incl)	50	50	


geometry is in place

LCG COOL project is providing the underlying infrastructure for conditions DB

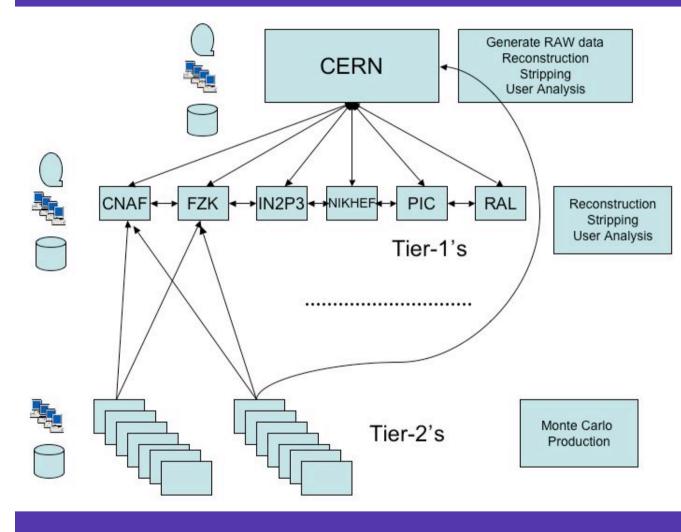
Distributed computing - production with DIRAC

DIRAC uses the paradigm of a Services Oriented Architecture (SOA).

<u>Distributed computing - production with DIRAC</u>

- The DIRAC overlay network paradigm is first of all there to abstract heterogeneous resources and present them as single pool to a user :
 - LCG or DIRAC sites or individual PC's (or other Grids)
 - Single central Task Queue is foreseen both for production and user analysis jobs
- The overlay network is dynamically established
 - No user workload is sent until the verified LHCb environment is in place

GANGA - user interface to the Grid



• Goal

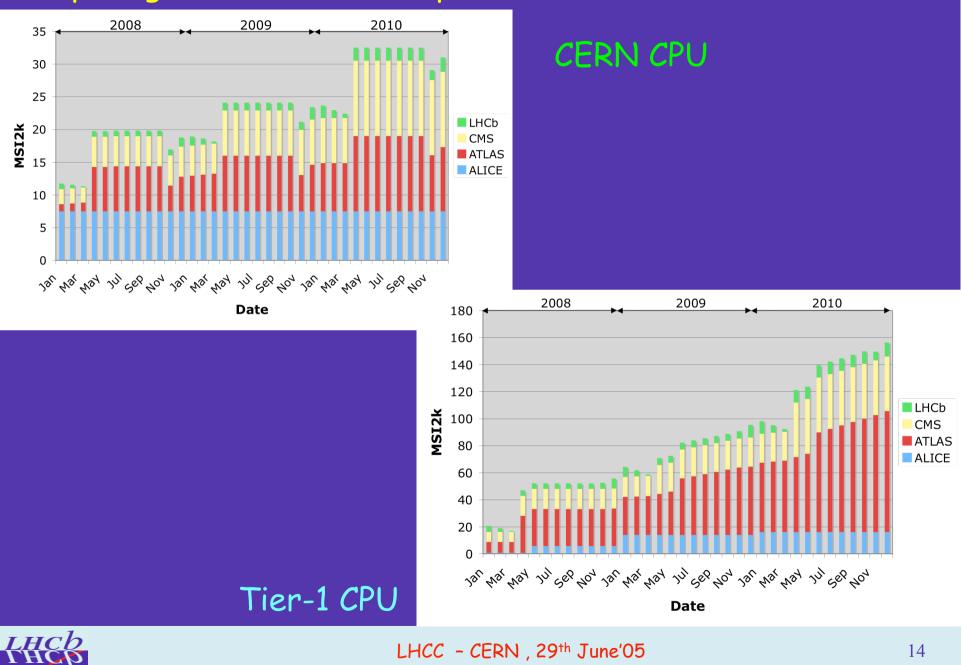
- Simplify the management of analysis for end-user physicists by developing a tool for accessing Grid services with built-in knowledge of how Gaudi works
- Required user functionality
 - Job preparation and configuration
 - Job submission, monitoring and control
 - Resource browsing, booking, etc.
- Done in collaboration with ATLAS
- Use Grid middleware services
 - interface to the Grid via Dirac and create synergy between the two projects

Computing Model

CERN Tier-1 centre will be essential for accessing the "hot stream" data to:

alignment & calibration

ii. First high level analysis



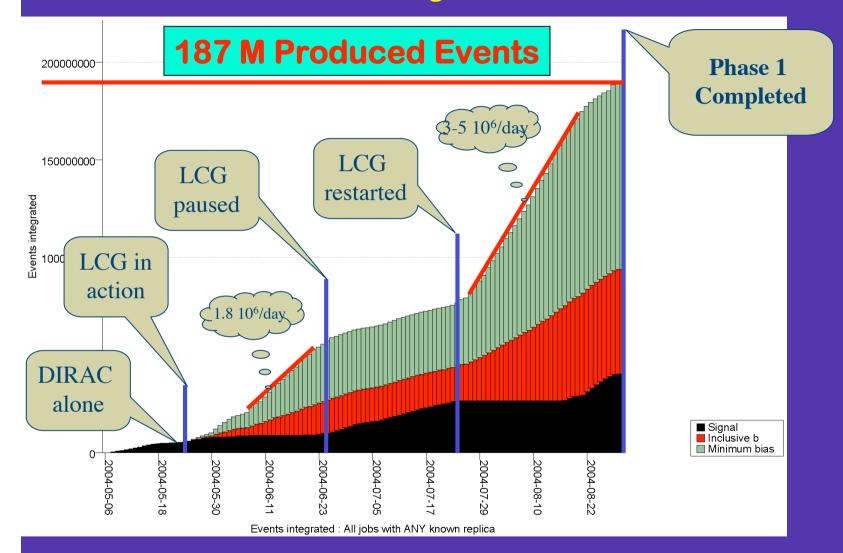
<u>Computing Model - resource summary</u>

Nos. of CPUs (2.4GHz PIV)	2006	2007	2008	2009	2010
CERN	312	624	1040	1445	2173
Tier-1's	1537	3063	5109	6416	9653
Tier-2's	2647	5306	8843	8843	8843
Total	4497	8994	14994	16705	20670

<u>Computing Model - resource profiles</u>

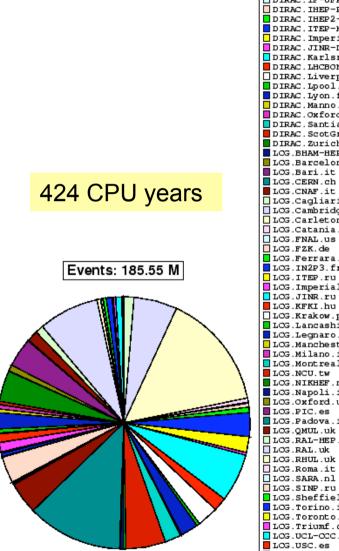
<u>Computing Model - resource summary</u>

Disk(TB)					
CERN	248	496	826	1095	1363
Tier-1's	730	1459	2432	2897	3363
Tier-2's	7	14	23	23	23
Total	984	1969	3281	4015	4749
MSS (TB)					
CERN	408	825	1359	2857	4566
Tier-1's	622	1244	2074	4285	7066
Total	1030	2069	3433	7144	11632



LHCb & LCG

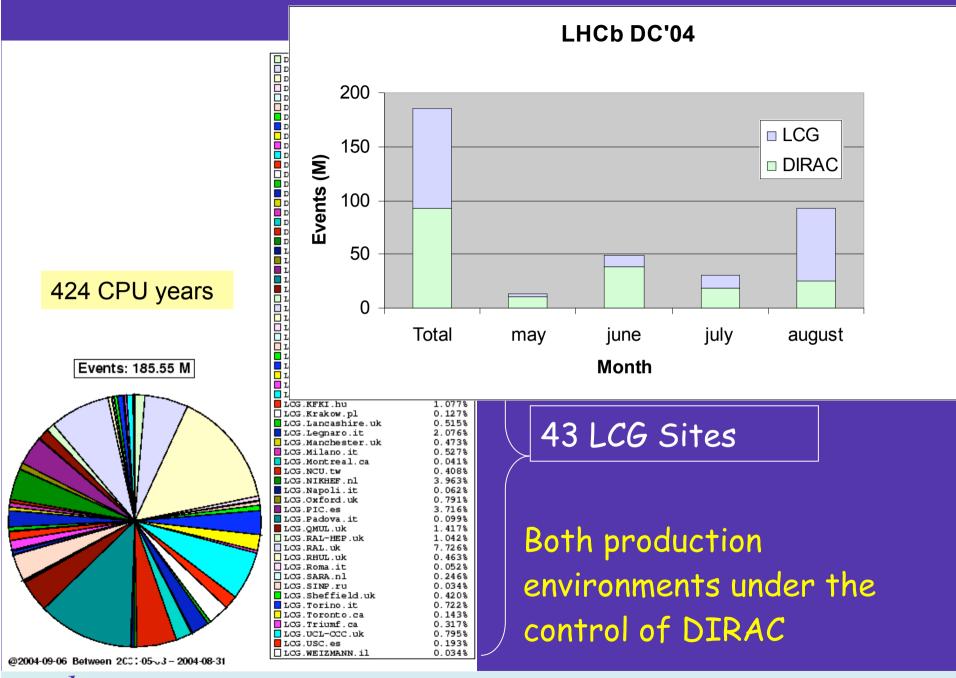
- DCO4 (May-August 2004)
 - 187 Mevts simulated and reconstructed
 - 61 Tbytes of data produced
 - 43 LCG sites used
 - 50% using LCG resources (61% efficiency)
- DC04v2 (December 2004)
 - 100 Mevts simulated and reconstructed
- DC04 stripping
 - Helped in debugging CASTOR-SRM functionality
 - CASTOR-SRM now functional (at CERN, CNAF, PIC)
- RTTC production (May 2005)
 - 200 Mevts simulated (minimum bias) in 3 weeks (up to 5500 jobs simultaneously)



LHCb & LCG - Data Challenge 2004

DCO4 production

DIRAC.Barcelona.es 1.305% DIRAC.Bologna.it 5.560% DIRAC . CERN . ch 14.96% DIRAC.CracowAgu.pl 0.532% DIRAC. IF-UFRJ.br 0.124% DIRAC. IHEP-Protvino.ru 0.504% DIRAC.IHEP2-Protvino.ru 0.691% DIRAC.ITEP-Moscow.ru 3.066% DIRAC.Imperial.uk 2.017% DIRAC.JINR-Dubna.ru 0.353% DIRAC.Karlsruhe.de 6.181% DIRAC. LHCBONLINE.ch 1.752% DIRAC.Liverpool.uk 2.674% 0.405% DIRAC. Lpool.uk DIRAC.Lyon.fr 2.273% DIRAC, Manno, ch 0.035% DIRAC.Oxford.uk 0.137% DIRAC.Santiago.es 2.053% DIRAC.ScotGrid.uk 5.078% DIRAC.Zurich.ch 0.355% LOG.BHAM-HEP.uk 0.341% 0.106% LOG.Barcelona.es 0.010% 12.22% 4.097% LOG.Caqliari.it 0.049% LOG.Cambridge.uk 0.128% LOG.Carleton.ca 0.146% LOG.Catania.it 0.031% 0.017% 3.375% LOG.Ferrara.it 0.094% LOG.IN2P3.fr 0.419% 0.176% LOG.Imperial.uk 1.188% 0.021% 1.077% LCG.Krakow.pl 0.127% 0.515% LOG.Lancashire.uk LOG.Legnaro.it 2.076% LOG.Manchester.uk 0.473% LOG.Milano.it 0.527% 0.041% LOG.Montreal.ca 0.408% LOG.NIKHEF.nl 3.963% LOG.Napoli.it 0.062% LOG.Oxford.uk 0.791% 3.716% LOG.Padova.it 0.099% 1.417% LOG.RAL-HEP.uk 1.042% 7.726% 0.463% 0.052% 0.246% 0.034% LOG.Sheffield.uk 0.420% LOG.Torino.it 0.722% LOG.Toronto.ca 0.143% LOG. Triumf. ca 0.317% 0.795% LOG.UCL-OCC.uk 0.193% LOG.WEIZMANN. il 0.034%


20 non-LCG Sites

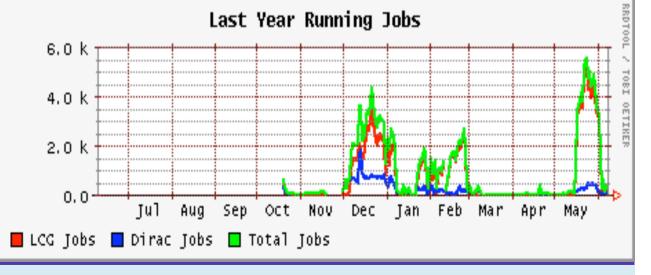
43 LCG Sites

Both production environments under the control of DIRAC

@2004-09-06 Between 2C0: 05-J - 2004-08-31

DC04 produced data

TIER 0	Nb of Events	Size (TB)
CERN	187.6M	62


Tier 1	Nb of Events	Size (TB)
CNAF	37.1M	12.6
RAL	19 .5M	6.5
PIC	16.5M	5.4
Karlsruhe	12.5M	4
Lyon	4.4M	1.5

Large scale production in 2005 on the Grid

- The RTTC production lasted just 20 days
- The startup was very fast
 - In a few days almost all available sites were in production
 - system was able to run with 4000 CPUs over 3 weeks, with a peak of over 5500 CPUs - improvement with respect to DC04 data challenge.
- 168 M events produced (11 M events as final

output after LO)

LHCb & LCG - SC3 & beyond

- Data Management
 - Storage Elements for permanent storage should have a common S(torage) R(esource) M(anagement) interface
 - Supports the LCG requirements for SRM (v2.1)
 - Evaluating for transfer gLite-FTS in Service Challenge 3 (SC3)
 - Evaluating LCG File Catalog in SC3
 - Previously used AliEn FC and LHCb bookkeeping DB
 - Uses its own "metadata" catalogue (LHCb Bookkeeping DB)
 - Implementation based on ARDA metadata interface being tested
- Computing resources
 - Requires a standard Computing Element (front-end to local resource management system) interface to which Dirac agents could submit jobs and query status and monitoring information
 - Requires a framework for deploying LHCb-specific agents at major sites
 - Resources (CPU, disk, database) to be defined with sites

LHCb Computing Milestones

Analysis at all Tier-1's - November 2005

Start data processing phase of DC'06 - May 2006

- i. Distribution of RAW data from CERN
- ii. Reconstruction/stripping at Tier-1's including CERN
- iii. DST distribution to CERN & other Tier-1's
- Alignment/calibration challenge October 2006
 - i. Align/calibrate detector
 - ii. Distribute DB slice synchronize remote DB's
 - iii. Reconstruct data

Production system and software ready for data taking -April 2007

Summary

- LHCb has in place a robust s/w framework
- Grid computing can be successfully exploited for production-like tasks
- Next steps:
 - Realistic Grid user analyses
 - Prepare reconstruction to deal with real data
 - particularly calibration, alignment, ...
 - Stress testing of the computing model

