Enabling Data Intensive Applications using Logistical Networking Tools

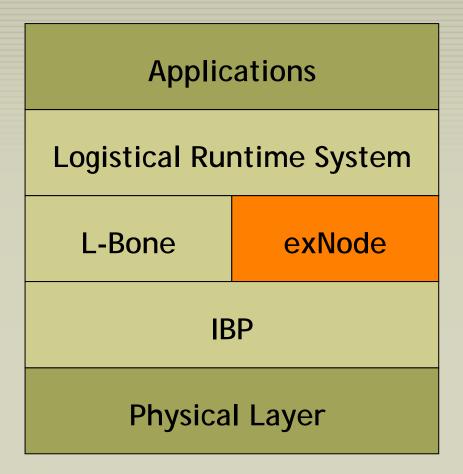
Micah Beck

Associate Professor

Logistical Computing and Internetworking Lab Computer Science Department University of Tennessee

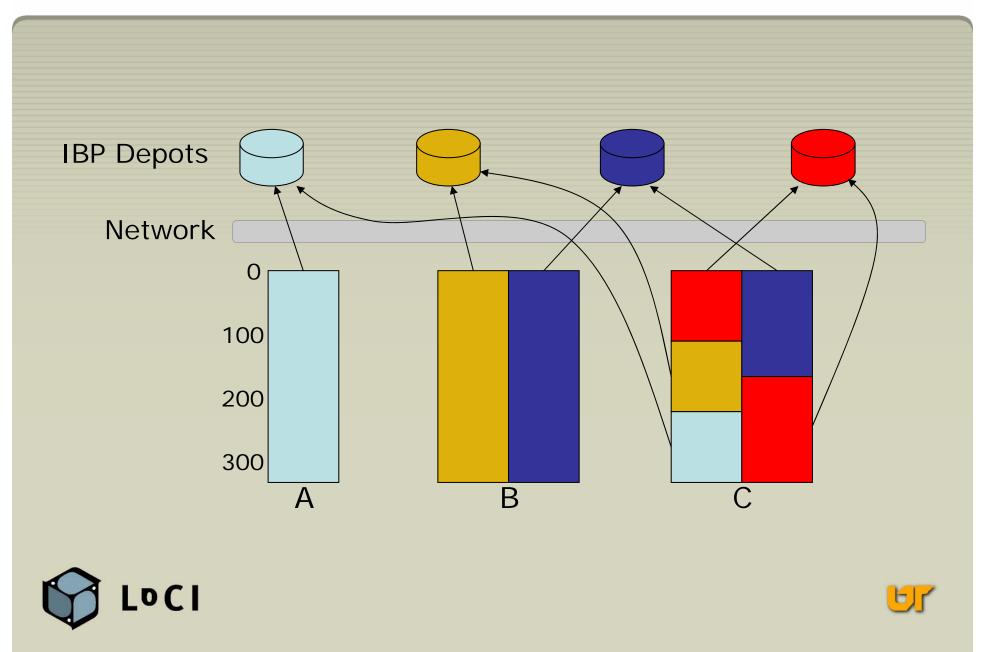
DOE Network PI Meeting

9/28/2005


The Internet Backplane Protocol

- » A common service for state management in a shared network
- » A basis for asynchronous communication
- » Scalability comes from weak assumptions:
 - Maximum size & duration of allocation
 - A highly generic, "best effort" service
 - "a weak network version of malloc"
- » Robust services are built on top in an end-to-end manner!
- » The goal is scalability analogous to the Internet

exNode



- » Like Unix inode
- » Provides mapping from logical view to the storage
- » Allows for larger stored files than any single IBP allocation or any single IBP "depot" can provide
- » Allows for replication to improve reliability and performance
- » Allows unlimited annotation of the global exNode and of individual mappings
- » Provides means to describe if the data was transformed before storage (e.g. encrypted)
- » Serializes to XML

Sample exNodes

"Data in Transit"

- » After being generated by an instrument or supercomputer
- » Not stored in a permanent archive
- » Serving the diverse purposes of a community of users and applications
- » Being transferred, processed and stored to meet changing and unanticipated needs
 - Visualization
 - Data Mining
 - Collaboration
 - Distributed Computing

SciDAC Application Impact

- » Terascale Supernova Initiative
 - (A. Mezzacappa, ONRL; J. Blondin, NCSU, D. Swesty, SUNY Stony Brook)
 - Five 1.6TB depots deployed at TSI sites
- » Energy Fusion Research (S. Klasky, PPPL)
 - Depots deployed on PPPL cluster nodes
- » Dataset transfers: O(1TB) @ 1-400 Mb/s
 - Simulations at NERSC and ORNL
 - Control/viz at ONRL, NCSU, Stony Brook, PPPL
 - Transfers span ESNet, Abilene
- » Collaborating with two Fusion Simulation SciDAC projects to enable Logistical Networking for Data Management
- » Application outreach: Combustion, Particle Physics, Earth Sci, Material Sci, ...

Porting Application I/O Libraries to Logistical Networking

- » Reading and writing directly to IBP depots using LoRS functions and exNodes
 - NetCDF/L
 - HDF/L
 - libxio (POSIX functionality) no relation to Globus XIO
 - stdio (in development)
- » ROMIO Support of LN
 - Jonghyun Lee of Argonne National Laboratory
 - ADIO_LN implements abstract device
 - MPIO
 - Parallel netCDF
 - Parallel HDF5

Indirect Management of Data

- » Anecdote: VH-1 Supernova Simulation Code
 - Data distributed among 200-1000 processors
 - Highest bandwidth achieved when each processor writes a separate file independently
 - Inconvenient to manage
 - » Collective I/O generates one file
 - » Postprocessing combines files
- » If a single entity can be described in metadata, (eg. exNode) no data movement is required
 - But what about architecture dependences: endianism, floating point representation?

Goal: Flexible Management of Metadata Decoupled From Storage Resources

- » Seperation of Object Storage Targets from metadata is a trend in parallel file systems
 - PVFS2, Lustre
- » Object Storage Devices are becoming more abstract
 - Move away from block addressing
 - Sharing between hosts implemented at the OSD
- » OSDs do not support sharing within a network community
 - Access to storage resources requires participation in distributed file system.

Logistical and Optical Networking

- » Optical switching provides ultrascale connectivity between directly attached nodes without buffering
- » There are reasons why buffering may be required even when using an optical network
 - Some application communities have nodes not attached to the optical switched network
 - There may be non-homogeneity between parts of the optical network, eg in capacity, traffic
- » Buffering allows connections between optical and non-optical networks
- » Buffering can increase utilization of optical paths

Whither Data Intensive Applications?

- » Massive computations are part of a larger workflow that requires movement of data in the wide area
- » Scientists interact with long batch computations as "slow streams" of intermediate results.
- » Managing global distribution, archiving and access are seen as future challenges.
- » Growing disconnect between processing and storage, systems and network
 - Part of this has to do with accounting!
- » A static view of data does not model this world!

mbeck@cs.utk.edu

http://loci.cs.utk.edu

