LHCb at EPFL: computing report

Stefano Villa

Laboratoire de Physique des Hautes Energies, EPFL

CHIPP LHC Computing and Analysis workshop Manno, August 25-26, 2005

Contents

- Present and recent activities in computing and software in Lausanne.
- The LHCb computing model for Tier-2 centres.
- Estimate of resources needed by EPFL at Tier-2 and Tier-3.

DISCLAIMER: all numbers are preliminary and based on extrapolations: allow for big uncertainties...

LHCb software and computing at EPFL

• Level 1 and High Level trigger:

- Development, implementation and maintenance of L1 trigger.
- Integration of L1 software in online monitoring system (PVSS).
- Some exclusive HLT selections.

• Simulation, reconstruction and analysis software:

- Description of Inner Tracker geometry and material in the simulation.
- Algorithm for evaluating efficiencies and purities of trigger and selection.
- Flavour tagging algorithms and monitoring.
- Improvement of online tracking (VELO-TT matching).
- Jet reconstruction.

LHCb software and computing at EPFL

Physics analyses

- $-B_s \rightarrow \eta_c \phi$, $B_s \rightarrow J/\psi \eta$, $B_s \rightarrow J/\psi \eta'(\eta \pi \pi)$ selections and sensitivity studies (extraction of ϕ_s).
- $B_s \rightarrow D_s \pi$ selection and first look at performance at high lumi. (measurement of Δm_s).
- Photon polarization in $\Lambda_b \rightarrow \Lambda \gamma$
- Light Higgs: selection and sensitivity studies.

Distributed data analysis

 Limited experience in our group: one user tried GANGA to submit jobs to CERN LSF batch system.

User's analysis: LHCb's model

• LHCb's computing model: Tier-2 centres are primarily devoted to MC production (LHCb TDR 11)

MC production, LHCb requirements for Tier-2:

(stays roughly constant in time)

	All Tier-2s	Manno (~10%)
CPU (MSI2k)	7.65	0.765
Storage (TB)	23	2.3

User's analysis: LHCb's model

- User's analysis at Tier-2 is possible if, on top of what is needed for MC production, there is:
 - At least ~ 0.2 PB of disk storage (1 copy of latest DST).
 - Some minimal CPU (see later our needs).
 - Enough network, to get DSTs every time they are produced:
 ∼50 MB/s during 1 month of stripping, 4 times per year.
- At Tier-2, user analysis consists of batch jobs: interactive analysis (Ntuples...) must be done elsewhere (Tier-3 or local).

Estimate of needed resources: people

- Today's composition of the group (LHCb + other projects)
 - Faculty: 3 profs, 1 prof. NFS, 1 MER, 1 senior researcher
 - 5 postdocs
 - 15 PhD students
- Assuming the same size of the group and phasing out of other activities by 2008, ~ 15 FTE physicists doing analysis ("active users").

Estimate of needed resources: assumptions

- Assume all MC production done at Tier-2, centrally coordinated (**not included in the following**).
- EPFL has/will have a few Linux clusters; not yet clear how much grid integration we can expect. It might work as (be part of) Tier-3.
- Assume that a big part ($\sim 50\%$) of analysis jobs will be sent to Tier-2. The rest will run at Tier-1 centres or CERN.

Estimate of needed resources: numbers

• TDR estimates of computing needs per active user:

- CPU: 5.6 kSI2k

- Storage: 1.4 TB

• Correct for efficiencies: 60% "chaotic" CPU usage and 70% of disk usage

- CPU: 9.3 kSI2k

- Storage: 2.0 TB

• Assume "slow" startup: only 10% of analysis done at Tier-2 in 2008 (the rest at Tier-1).

Estimate of needed resources at Tier2: evolution

- Ramp up to full (50% of total) use by 2009.
- Assume no change in manpower; CPU usage and disk storage should grow linearly with data:

Resource requirements at Tier-2 for EPFL:

	2008	2009	2010	
CPU (kSI2k)	14	140	210	
Storage (TB)	3	30	45	

Estimate of needed resources at Tier3

- Assume less need of CPU for "local" analysis than for "batch" analysis (1/2). Time evolution should also be slower (1/2).
- Storage should be smaller (1/2), most files can stay at Tier-2.

Resource requirements at Tier-3 for EPFL:

	2008	2009	2010	
CPU (kSI2k)	70	105	140	
Storage (TB)	15	30	45	

Final considerations

- It is very difficult to formulate reliable estimates on how people will run their analysis in 3-5 years.
- At the end users will actually use whatever works better/faster, regardless of what we "plan" today.

But... we have to plan!