

GRID Infrastructures in Europe and applications

Fabrizio Gagliardi Project Director EGEE CERN

SERONO, 28 June 2005

www.eu-egee.org

INFSO-RI-508833

egee

Computing intensive science

- Science is becoming increasingly digital and needs to deal with increasing amounts of data
- Simulations get ever more detailed
 - Nanotechnology design of new materials from the molecular scale
 - Modelling and predicting complex systems (weather forecasting, river floods, earthquake)
 - Decoding the human genome
- Experimental Science uses ever more sophisticated sensors to make precise measurements
 - → Need high statistics
 - → Huge amounts of data
 - → Serves user communities around the world

- CERN: the world's largest particle physics laboratory
- Particle physics requires special tools to create and study new particles: accelerators and detectors

• Large Hadron Collider (LHC):

- One of the most powerful instruments ever built to investigate matter
- four experiments:
 ALICE, ATLAS, CMS, LHCb
- 27 km circumference tunnel
- due to start up in 2007

Particle physics (II)

- Physicists smash particles into each other to:
 - identify their components
 - create new particles
 - reveal the nature of the interactions between them
 - create an environment similar to the one present at the origin of our Universe
- A particle collision = an event
 - need to count, trace and characterize all the particles produced and fully reconstruct the process
- Among all tracks, the presence of "special shapes" is the sign for the occurrence of interesting interactions

The LHC Data Challenge

Enabling Grids for E-sciencE

Starting from this event

Looking for this "signature"

→ Selectivity: 1 in 10¹³ (Like looking for a needle in 20 million haystacks)

INFSO-RI-508833

Data handling

Enabling Grids for E-sciencE

INFSO-RI-508833

eGee

- 40 million collisions per second
- After filtering, 100 collisions of interest per second
- A Megabyte of data for each collision = recording rate of 0.1 Gigabytes/sec
- 10¹⁰ collisions recorded each year
- ~ 10 Petabytes/year of data
- LHC data correspond to about 20 million CDs each year!

LHC Processing

• Simulation

→compute what the detector should have seen

Reconstruction

→transform signals from the detector to physical properties (energies, charge of particles, …)

- Analysis
 - →use complex algorithms to extract physics

→ LHC data analysis requires a computing power equivalent to ~ 100,000 of today's fastest PC processors!

- High-throughput computing based on reliable "commodity" technology
- More than 1500 dual processor PCs
 - 5000 in 2007
- More than 3 Petabyte of data on disk and tapes
 - > 15 PB in 2007

→ Nowhere near enough!

SETI@home

P2P computing

Only useful for problems that

- are embarrassingly parallel
- can be split up into small independent data packages —

- Einstein@home
- Folding@home
- GIMPS
- Grid.org & World Community Grid (IBM)

Enabling Grids for E-sciencE h1

eGee

- **Examples**
 - Seti@home

 - LHC@home

technology solving problems

h1 Ihc@home - simulates particles traveling around the LHC to study the stability of their orbits

Einstein@home - search for spinning neutron stars (also called pulsars) using data from the LIGO and GEO gravitational wave detectors

Folding@home - studies protein folding, misfolding, aggregation, and related diseases

GIPMS - On 18 Feb a eye surgen found the largest prime number yet with more than 7 million digits $_{hammerle,\ 5/20/2005}$

Linked Supercomputer Centres

Enabling Grids for E-science

• DEISA

• TeraGrid

- GGGGGGE Enabling Grids for E-sciencE
 Integrating computing power and data storage capacities at major computer centres
 - Providing users with seamless access to computing resources, 24/7, independent of geographic location

- More effective and seamless collaboration of dispersed communities, both scientific and commercial
- Ability to run large-scale applications comprising thousands of computers, for wide range of applications
- →The term "e-Science" has been coined to express these benefits

 The Grid relies on advanced software, called middleware, which interfaces between resources and the applications

• The GRID middleware:

- Finds convenient places for the application to be run
- Optimises use of resources
- Organises efficient access to data
- Deals with authentication to the different sites that are used
- Runs the job & monitors progress
- Recovers from problems
- Transfers the result back to the scientist

eee Grid related projects in Europe (I) Enabling Grids for E-sciencE

Several European projects provide access to IT-resources (connectivity, computing, data, instrumentation...) for scientists:

eee

- Providing e-Infrastructure
 - Géant2
 - EGEE
 - DFISA
 - SEE-GRID
- Benefiting from e-Infrastructure
 - DILIGENT
 - SIMDAT
 - GRIDCC
 - CoreGRID
 - GridLab
- **Concertation: EGEE, GridCoord**
- **Grid mobility:** Akogrimo

on Grid ENabled Technology

Core GRIC

GE[★]NT2

Infrastructure for Supercomputing

Applications

iligent

Distributed European

Projects in Europe (II)

- GÉANT2 is the 7th generation of the pan-European research and education network, successor to the multi-gigabit research network GÉANT.
 - Official start: 1 September 2004, Duration: 4 years
 - Funding: EC, national research, education networks
 - Managed by DANTE in the UK

GE<mark>≵</mark>NT2

- Goal:
 - connect 34 countries through 30 national research and education networks (NRENs)
 - using multiple 10Gbps wavelengths
 - extend to outside the EU including India
- Status:
 - Tendering for equipment and services in progress
 - Planning of network topology underway
 - Transition from GÉANT network to GÉANT2 will take place gradually, started in the first quarter of 2005.

- DEISA
 - consortium of leading national supercomputing centres in Europe
 - aiming to jointly build and operate a distributed terascale supercomputing facility
- DEISA is a consortium of leading national supercomputer centres in Europe
 - IDRIS CNRS, France
 - FZJ, Jülich, Germany
 - RZG, Garching, Germany
 - CINECA, Italy
 - EPCC, Edinburgh, UK
 - CSC, Helsinki, Finland
 - SARA, Amsterdam, The Netherlands
 - ECMWF (European Organization), Reading, UK
- Funded by: European Union FP6
- Grant period: 1 May 2004 30 April 2009

- SEE-GRID intends to pave the way towards the participation of the SE European countries to the Pan-European and worldwide Grid initiatives.
- Based on EGEE
- Interconnection of SE European regional infrastructure to pan-European and worldwide Grid initiatives
- Start: 1 May 2004
- Duration: 2 years

CGCC EU Grid technology & infrastructure

Enabling Grids for E-sciencE

Building the European *e*Infrastructure for research

- Objectives
 - consistent, robust and secure service grid infrastructure
 - improving and maintaining the middleware
 - attracting new resources and users from industry as well as science

• Structure

- 70 leading institutions in 27 countries, federated in regional Grids
- leveraging national and regional grid activities worldwide
- funded by the EU with ~32 M Euros for first 2 years starting 1st April 2004

EGEE Infrastructure

Enabling Grids for E-sciencE

eeee)

EGEE Middleware – gLite

- First release end of March 2005
 - →Focus on providing users early access to prototype

Service oriented infrastructure

- Interoperability
- Portability
- Modularity
- Scalability
- Open source license

gLite R&D

- Integration
- Testing
- Development
 - Workload Management
 - Information Systems
 - Security
 - Data Management

 gLite offers a complete data management solution in a distributed environment building on existing technology

Data Management Services

Enabling Grids for E-sciencE

- Storage Element
 - Storage Resource Manager
 - POSIX-I/O
 - Access protocols
- Catalogues
 - File Catalogue
 - Replica Catalogue
 - File Authorization Service
 - Metadata Catalogue
- File Transfer
 - Data Scheduler (not implemented yet)
 - File Transfer Service
 - File Placement Services
- User Interface

Using the Grid

- To ensure the integrity of the information stored on the grid network you need to be a VO member to submit jobs to the grid
- Virtual Organizations (VOs)
 - a group of Grid users with similar interests and requirements
 - working collaboratively and/or sharing resources

• EGEE currently supports 13 VOs from many different scientific areas

Pilot applications

- Enabling Grids for E-science
 - High-Energy Physics (HEP)
 - Provides computing infrastructure (LCG)
 - Challenging:
 - thousands of processors world-wide
 - generating terabytes of data
 - 'chaotic' use of grid with individual user analysis (thousands of users interactively operating within experiment VOs)

Biomedical Applications

- Similar computing and data storage requirements
- Major challenge: security

BioMed Overview

Enabling Grids for E-sciencE

- Infrastructure
 - ~2.000 CPUs
 - ~21 TB disks
 - in 12 countries

- >50 users in 7 countries working with 12 applications
- 18 research labs
- ~80.000 jobs launched since 04/2004
- ~10 CPU years

GEANT4 Application to Tomography Emission

- Scientific objectives
 - Radiotherapy planning to improve treatment of tumors computed from pre-treatment MR scans
- Method
 - GEANT4-based software to model physics of nuclear medicine
 - Monte Carlo simulation to improve accuracy of computations
- Grid added value

- Splitting the random number sequences needed for Monte Carlo simulations enables independent computations
- Parallelization reduces the total computation time
- Results and perspectives
 - computation time reduced BUT not sufficiently for clinical practice
 - → further optimizations are on-going
 - large community of users is interested in GATE

INFSO-RI-508833

- Clinical Decision Support System
 - Scientific objectives
 - Extract clinically relevant knowledge to guide practitioners in their clinical practice
 - Method
 - Starting from trained databases
 - Use classifier engines
 - Compare to annotated databases to classify data
 - Grid added value

Classification of tumours in soft tissues

- Ubiquitous access to distributed databases and classifier engines
- Grid information system to publish and discover data sources and engines
- Automatic management of login and security
- Results and perspectives
 - 12 classification engines available
 - 1000 medical cases registered
 - Dynamic discovery of all engines can be implemented on top of the grid information system
 - Accounting will be provided by the grid

Pharmacokinetics

- Co-registration of Medical Images
 - Scientific objectives
 - Contrast Agent Diffusion to characterize tumour tissues without biopsy
 - Method
 - Co-registration requires deformable registration methods
 > compute intensive
 - Grid added value
 - Processing of compute intensive co-registration and generation of diffusion maps for the 3D MRI Studies.
 - Parallel & independent computations on different input data sets
 - Results and perspectives
 - Last clinical test: 12 patients with 13 MRI studies each each study comprises 24 512x512 12-bit slices
 - Processing of the registration algorithm takes around 12 hours per study
 - Registration parameters tuned with four possible combinations
 - Each combination of parameter took 2 hours
 - \rightarrow 72 times faster than with a single computer

institut de Bioleg.

- Grid Protein Structure Analysis
 - Scientific objectives
 - Integrating up-to-date databases and relevant algorithms for bio-informatic analysis of data from genome sequencing projects
 - Method
 - Protein databases are stored on the grid as flat files
 - Protein sequence analysis tools run unchanged on grid resources
 - Output is analysed and displayed in graphic format through the web interface
 - Grid added value
 - Convenient way to distribute and access international databanks, and to store more and larger databases
 - Compute larger datasets with available algorithms
 - Open to a wider user community
 - Results and perspectives
 - 9 bioinformatic softwares gridified so far
 - large number of rather short jobs (few minutes each)
 - Optimizations on-going to
 - speed up access to databases
 - lower short jobs latencies

Enabling Grids for E-sciencE

- 3D Magnetic Resonance Image Simulator
 - Scientific objectives
 - Better understand MR physics by studying MR sequences in silico and MR artefacts
 - Validate MR Image processing algorithms on synthetic but realistic images
 - Method

Grid added value

- Speeds up the simulation time
- Enables simulation of high resolution images
- Offers an access to MPI-enabled clusters
- Results and perspectives
 - Manageable computation time for medium size images
 - Development of a portal to ease access to the application
 - Implementation of new artifacts

- 3D Medical Image Analysis Software
 - Scientific objectives
 - Interactive volume reconstruction on large radiological data
 - Method
 - Starting from hand-made initialization
 - Algorithm segments each slice of a medical volume
 - 3D reconstruction by triangulating contours from consecutive slices
 - Grid added value
 - Interactive reconstruction time: less than 2mins and scalable
 - Permanent availability of resources for fast reconstruction
 - Access to users at non grid-enabled sites (e.g. hospital)
 - Unmodified medically optimized interface
 - Results and perspectives
 - Successfully ported and demonstrated at first EGEE review
 - Streams to/from non EGEE-enabled sites specific protocol, CrossGrid glogin will be considered
 - Resource access QoS: ongoing work

• Macromolecules structure analysis from electron microscopy

xmipp_ML_refine

- Scientific objectives
 - 3D reconstruction of molecular structural information from cryo-electron microscopy
- Method

eGee

- Multi-reference refinement of electron microscopy structures through a maximum likelihood statistical approach
- Grid added value
 - Very compute intensive analysis of multiple structures
 - 2D: one to several weeks on a single CPU
 - 3D: even more costly

Enabling Grids for E-sciencE

- Computation can be split in independent jobs that are executed in parallel
- Results and perspectives
 - First results on 2D analysis show significant time gain: two months on a local cluster (20 CPUs) versus one month on the grid
 - algorithm still being optimized and ported to 3D case
 - MPI implementation is currently being developed that should significantly improve the computation time

Electron microscope images correction

- Scientific objectives
 - Electron microscopy images impaired by electron sources and defocus of magnetic lenses used in experimental practice

xmipp_ML_CTFs (

- Image aberrations are described by a Contrast Transfer Function (CTF) that need to be estimated to fix images
- CTF estimation lead to drastic image enhancement
- Method
 - Auto regressive modelling is used to estimate parameters of the CTF and produce more reliable results than classical Fourier transform-based approaches
- Grid added value
 - Very compute intensive: complex functional, slow optimisation process
 - Parallelisation on different grid resources
- Results and perspectives
 - \rightarrow 2 months on a single CPU
 - \rightarrow 2 days on a local 20-CPUs cluster
 - \rightarrow 14 hours on the grid

CEGECE In silico Drug Discovery

- Scientific objectives
 - Provide docking information to help in the search for new drugs
 - Propose new inhibitors (drug candidates) addressed to neglected diseases
 - In silico virtual screening of drug candidate databases
- Method
 - Large scale molecular docking on malaria to compute millions of potential drugs with different software and parameters settings
- Grid added value
 - Drug discovery usually takes up to 12 years to complete
 - Docking much faster, but large databases lead to heavy computations
 ⇒ split candidate drug input on different grid resources
- Results and perspectives
 - Limited size computation (105 candidate drugs tested for 1 protein target) achievable in 2 days using the Grid compared to 6 months of CPU time
 - Full data challenge planed
 - 3x106 candidate drugs against 5 protein targets
 - Total computing time will reach 80 years of CPU and 6 TB of storage

Genome evolution modeling

- Scientific objectives
 - Study human evolutionary genetics and answer questions such as
 - geographic origin of modern human populations
 - genetic signature of expanding populations
 - genetic contacts between modern humans and Neanderthals
- Method
 - Simulate past demography of human populations in a geographically realistic landscape
 - Generate molecular diversity of samples of genes drawn from the current human's range, and compare to observed contemporary molecular diversity
- Grid added value
 - Due to the Bayesian approach used, the SPLATCHE application is very compute intensive
 - Independent simulations can be executed in parallel
- Results and perspectives
 - Application prototype ported on the EGEE middleware
 - Scale tests on the full grid infrastructure underway

- EGEE Generic Applications Advisory Panel (EGAAP)
 - UNIQUE entry point for "external" applications
 - Reviews proposals and make recommendations to EGEE management
 - Deals with "scientific" aspects, not with technical details
 - Generic Applications group in charge of introducing selected applications to the EGEE infrastructure
 - 6 applications selected so far:
 - Earth sciences (I and II)
 - MAGIC
 - Computational Chemistry
 - PLANCK
 - Drug Discovery
 - GRACE (end Feb 2005)

Earth sciences applications

Enabling Grids for E-science

- Earth Observations by Satellite
 - ozone profiles
- Solid Earth Physics
 - Fast Determination of mechanisms of important earthquakes
- Hydrology
 - Management of water resources in Mediterranean area (SWIMED)
- Geology
 - Geocluster: R&D initiative of the Compagnie Générale de Géophysique

- A large variety of applications ported on EGEE which incites new users
- Interactive Collaboration of the teams around a project

MAGIC

Ground based Air Cerenkov Telescope 17 m diameter

Enabling Grids for E-sciencE

• Physics Goals:

eGee

- Origin of VHE Gamma rays
- Active Galactic Nuclei
- Supernova Remnants
- Unidentified EGRET sources
- Gamma Ray Burst
- MAGIC II will come 2007
- Grid added value
 - Enable "(e-)scientific" collaboration between partners
 - Enable the cooperation between different experiments
 - Enable the participation on Virtual Observatories

• The Grid Enabled Molecular Simulator (GEMS)

- Motivation:
 - Modern computer simulations of biomolecular systems produce an abundance of data, which could be reused several times by different researchers.
 - \rightarrow data must be catalogued and searchable
- GEMS database and toolkit:
 - autonomous storage resources
 - metadata specification
 - automatic storage allocation and replication policies
 - interface for distributed computation

Planck

Enabling Grids for E-sciencE

- On the Grid:
 - > 12 time faster(but ~5% failures)
- Complex data
 structure
 - → data handling important
- The Grid as
 - collaboration tool
 - common user-interface
 - flexible environment
 - new approach to data and S/W sharing

- More than 140 training events (including the GGF grid school) across many countries
 - >1200 people trained
 - induction; application developer; advanced; retreats
 - Material archive coming online with ~200 presentations
- Public and technical websites constantly evolving to expand information available and keep it up to date
- 3 conferences organized
 - ~ 300 @ Cork
 - ~ 400 @ Den Haag
 - ~450 @ Athens

• Pisa: 4th project conference 24-28 October '05

- EGEE closely collaborates with other projects, e.g.
- Flooding Crisis (CrossGrid) demonstrated at 3rd EGEE conference in Athens
 - Simulation of flooding scenarios
 - Display in Virtual Reality
 - Optimize data transport
 - > won prize for "best demo"

Collaboration with Slowak Academy of Sciences

EGEE as partner

- **Ongoing collaborations**
 - with non EU partners in EGEE: US, Israel, Russia, Korea, Taiwan...
 - with other European projects, in particular:
 - GÉANT
 - DEISA
 - SEE-GRID
 - with non-European projects:
 - OSG: OpenScienceGrid (USA)
 - NAREGI

- 16 recently submitted EU proposals supported, among them:
 - Baltic states (Baltic Grid proposal to EU)
 - Latin America (EELA consortium on ALIS/CLARA networking)
 - Mediterranean Area (EUMedConnect)
 - China: EUGridChina

EGEE supports Euro-India ICT Co-operation Initiative

GE_ÅNT2

EE-GRII

EGEE and Industry

- Industry as
 - partner to increase know-how on Grid technologies
 - user for R&D applications
 - provider of established Grid services, such as call centres, support centres and computing resource provider centres

Industry Forum

- Raise awareness of the project among industries
- Encourage businesses to participate
 - → ability to "experience" EGEE Grid in early stages

From Phase I to II

- From 1st EGEE EU Review in February 2005:
 - "The reviewers found the overall performance of the project very good."
 - "... remarkable achievement to set up this consortium, to realize appropriate structures to provide the necessary leadership, and to cope with changing requirements."

• EGEE I

 Large scale deployment of EGEE infrastructure to deliver production level Grid services with selected number of applications

• EGEE II

- Natural continuation of the project's first phase
- Opening up to a larger user community
 increased multidisciplinary Grid infrastructure
 - → more involvement from Industry
- Extending the Grid infrastructure world-wide
 - increased international collaboration

- Grid deployment are creating a powerful new tool for science – as well as applications from other fields
- Several applications are already benefiting from Grid technologies
- Investments in grid projects are growing world-wide
- Europe is strong in the development of Grids also thanks to the success of EGEE

- Collaboration across national and international programmes is very important:
 - Grids are above all about collaboration at a large scale
 - Science is international and therefore requires an international computing infrastructure
- EGEE attracts increasing interest from industry
- This visit is a good opportunity to explore possible collaboration with Serono

• EGEE Website

http://www.eu-egee.org

• How to join

http://public.eu-egee.org/join/

EGEE Project Office

project-eu-egee-po@cern.ch

• How to learn more about Grids

http://www.dma.unina.it/~murli/GridSummerSchool2005