Electromagnetic Probes at the LHC

in (real + virtual) light of SPS and RHIC Results

Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA

PANIC '05 Satellite Meeting "Heavy-Ion Physics at the LHC" Santa Fe, 23.10.05

Outline

- 1. Four Pillars Electromagnetic Radiation
- 2. <u>EM Correlator and Chiral Symmetry</u>
- 3. <u>Space-Time Evolution of A-A</u>
- 4. Low-Mass Dileptons: Vector Mesons in-Medium
- 5. Photons
- 6. <u>Perspectives for LHC</u>
- 7. <u>Conclusions</u>

1.) Four Pillars of Thermal EM Radiation

 $q_0 \approx 0.5 GeV \Rightarrow T_{max} \approx 0.17 GeV$, $q_0 \approx 1.5 GeV \Rightarrow T_{max} = 0.5 GeV$

2.) EM Emission Rates and Chiral Symmetry

E.M. Correlation Function: $\Pi_{em}(q) = -i \int d^4x \, e^{iqx} \langle j_{em}(x) j_{em}(0) \rangle_T$

also: e.m susceptibility (charge fluct.): $\chi = \Pi_{em}(q_0 = 0, q \rightarrow 0)$

In URHICs:

- source strength: dependence on T, μ_B , μ_{π} , medium effects, ...
- system evolution: $V(\tau)$, $T(\tau)$, $\mu_B(\tau)$, transverse expansion, ...
- nonthermal sources: Drell-Yan, open-charm, hadron decays, ...
- consistency!

2.1 EM Correlator in Vacuum: $\sigma(e^+e^- \rightarrow hadrons)$

2.2 Low-Mass Dileptons + Chiral Symmetry

Im $\Pi_{em}(M)$ dominated by ρ -meson \rightarrow chiral partner: $a_1(1260)$

<u>or:</u> ρ_{long} chiral partner of $\pi \equiv$ "Vector Manifestation" [Harada+ Yamawaki '01]

3.) Space-Time Evolution of A-A Collisions: Trajectories in the Phase Diagram

• Entropy+baryon conservation \Rightarrow fixes $T(\mu_B)$ in the phase diagram • Time scale: hydrodynamics, e.g. $V_{FB}(\tau) = (z_0 + v_z \tau) \pi (R_0 + 0.5a_{\perp}\tau^2)^2$

Thermal Dilepton Emission Spectrum

$$\frac{dN_{ee}^{therm}}{dM} = \int_{\tau_0}^{\tau_{fo}} d\tau V_{FB}(\tau) \int \frac{Md^3q}{q_0} \frac{dN_{ee}^{therm}}{d^4xd^4q} (M,q;T,\mu_i) \left[\exp(\mu_{\pi}/T)\right]^N \pi Acc$$

4.) Vector Mesons in Medium

(a) <u>Hadronic Many-Body Theory</u>

[Chanfray etal, Herrmann etal, RR etal, Koch etal, Weise etal, Post etal, Eletsky etal, Oset etal, ...]

4.2 Dileptons I: News from SPS

• ρ -meson "melting" (+fireball) predictions ok, dropping mass not • open issues: - absolute normalization + p_t -dependence

- M > 0.9 GeV? $(4\pi \rightarrow \mu^+ \mu^-!)$, in-medium $\omega + \phi$?
- "cocktail-p" (+smooth signal)? vector dominance?

4.3 Vector Mesons + Dilepton Rates at LHC

5.) Direct Photons

5.2 Direct Photon Spectra at RHIC: PHENIX

Model Predictions with initial + jet-induced + thermal

- quantitative agreement with new **PHENIX** data
- jet-plasma interactions outshine thermal radiation above 2GeV?!

6.1 Perspectives for LHC I: Direct Photon Spectra

- thermal QGP prevails over pQCD up to 10GeV?!
- thermal yield ~ $N_{ch}^{1.4}$
- jet-plasma interactions relatively less important

6.2 Perspectives for LHC II: Thermal Dileptons

Low Mass

Intermediate Mass

- \bullet hadron gas dominant, sensitive to τ_{FB}
- strong medium effects
- enrich QGP with $p_t^e > 1 GeV$ (or so)
- moderate sensitivity to therm. time $\tau_0 = 0.28$, 0.11, 0.03 fm/c
- $\tau_0 >> R_{Pb} / \gamma \approx 10^{-3}$

6.3 Perspectives for LHC III: Dilepton Spectra

- open charm (bottom?) strong source at all M (energy loss?!), especially for N_{ch} < 3000
- less open charm at low mass, but more relative to QGP (IM)

7.) <u>Conclusions</u>

- Thermal EM Radiation in QCD: $\Pi_{em}(q_0, q, \mu_B, T)$ low mass: ρ, ω, ϕ , (anti-/baryons) + IMR + thermal photons
- in-med HG QGP shine equally bright? (resonances!?)
- NA60 precision data at SPS open the way for progress, explicit model predictions needed
- LHC: QGP signal relatively more prevalent than at RHIC
 - reduced sensitivity to initial (thermalization) time,
 - hadronic signal (chiral restoration) compromised by charm
 - open-charm E-loss: background or signal?

⇒ LHC can address the full set of EM-Probes Physics ?!