Measuring Parton Densities with Ultra-Peripheral Collisions at the LHC

Spencer Klein, LBNL

UPCs Photonuclear Interactions Measuring Structure Functions Vector Mesons Open Charm/Bottom Other Channels Other UPC interactions

Ultra-Peripheral Collisions

- Electromagnetic Interactions
- b > 2R_A;
 - no hadronic interactions
 - ♦ ~ 20-300 fermi at the LHC
 - b up to few mm for e⁺e⁻ pair production
- Ions produce strong EM fields
 - Treat as almost-real photons
 - Weizsacker-Williams method
 - Photon flux ~ Z²
 - Maximum photon energy = γ hc/RA
 - ~ ~ 100 GeV (lab frame) for Pb at the LHC
 - ~ ~ 600 TeV (target frame)
- Photonuclear and two-photon interactions occur

"Physics in the neighborhood of heavy ions" – Urs. Wiedemann

Photonuclear Interactions

- The photon fluctuates to a $q\overline{q}$ pair, which then interacts with the target
- Interactions can involve gluon, Pomeron (~2-gluons) or meson exchange
- Pomeron exchange ~ elastic scattering
 - Can be coherent over entire target
 - $\sigma \sim A^2$ (bulk) $A^{4/3}$ (surface)
 - $\sim \sigma(Pb + Pb Pb + Pb + \rho^0) \sim 5.2$ barns!
 - $P_{\perp} < h/R_A$, ~ 30 MeV/c for heavy ions
 - $P_{\parallel} < \gamma h/R_A \sim 100$ GeV/c at the LHC
- k_{max} in target frame is ~ 600 TeV!
- E_{γp} (max) = 705 GeV for PbPb
- Strong couplings --> large cross sections

Why use UPCs to study parton distributions?

- UPC reactions can directly probe gluon distributions
 - Study 'new phases of matter' like colored glass condensates.
 - Understand initial state ions for central collisions
- ~ 10X higher photon energies than HERA
 - Several times lower x values for protons
 - >1 order of magnitude lower x for nuclei
- Smaller (or at least different) systematics than from pA collisions
 - No Cronin Effect

Vector Meson Production

- Quark-nucleus elastic scattering
 - Coherent enhancement to cross section
- Light vector mesons (ρ,ω,φ,ρ*...)
 - Soft (optical model) Pomeron
- Heavy vector mesons $(J/\psi, \psi', Y...)$
 - Probe short distance scales
 - Scattering may be described via 2-gluon exchange

Au

qq

Au

- $\sigma(VM) \sim |g(x,Q^2)|^2$
 - $x = M_v/2\gamma m_p \exp(\pm y)$
 - Q² ~ M_V²

The effect of shadowing

- $\sigma(VM) \sim |g(x,Q^2)|^2$
- Shadowing reduces cross section
 - Factor of 5 for one standard shadowing model
- Rapidity maps into x
 - $y = \pm \ln(2x\gamma m_p/m_V)$
 - $rac{}{} = m_v/2\gamma m_p \exp(\pm y)$
- A colored glass condensate could have a larger effect

Frankfurt, Strikman & Zhalov, 2001

The 2-fold ambiguity

- Which nucleus emitted the photon?
 - x or k ~ $m_V/2\gamma m_p \exp(\pm y)$
 - Photon fluxes, cross sections for different photon energies (directions) are different
- 2 Solutions
 - Stick to mid-rapidity
 - ✓ For J/ψ at y=0, x= 6*10⁻⁴
 - Compare two reactions
 - Pb + Pb --> Pb + Pb + J/Ψ
 - ✓ Pb + Pb --> Pb* + Pb* + J/Ψ
 - Nuclear Excitation via additional photon exchange
 - 2 reactions have different impact parameter distributions
 - Different photon spectra
 - Solve system of 2 linear equations
 - Probe down to x ~ few 10⁻⁵

Rates (w/o shadowing)

Table 8: Cross sections and median impact parameters b_m , for production of vector mesons with lead beams at LHC ($\gamma_{cm} = 2940$).

Meson	overall		XnXn		1n1n	
	σ [mb]	b_m [fm]	σ [mb]	b_m [fm]	σ [mb]	b_m [fm]
ρ^0	5200	280	210	19	12	22
ω	490	290	19	19	1.1	22
ϕ	460	220	20	19	1.1	22
J/ψ	32	68	2.5	19	0.14	21
$\Upsilon(1S)$	0.17	[]	0.025	[]	0.0013	[]

- J/ψ --> 32 Hz --> 30M/year
- 3M Ψ' and 170,000 Y(1S)
 - 360,000 J/ψ --> e⁺e⁻ with |y|<1 /year
 - ◆ ~3,600 Ψ' and ~1,000 Y(1s)
 - Rate scales with rapidity coverage
- Rates are higher with lighter ions (higher L_{AA}) and pA

 10^6 s run at

 $I = 10^{27} / \text{cm}^2 / \text{s}$

AA vs. pA vs. pp

- Exclusive J/ψ production can be studied in AA, p/dA and pp collisions
 - ◆ Rates are high with all species
 - With it's distinctive signature, signal to noise ratio should be high for all species
 - In p/dA collisions the photon usually comes from the nucleus, and strikes the proton/deuteron.
 - Avoids two-fold ambiguity for proton targets
- Measure parton distributions in protons and nuclei
- σ(AA)/σ(pA) gives a quite direct, low systematics measurement of shadowing

Reconstruction

- Exactly 2 tracks in event
- p_T < 150 MeV/c</p>
 - Ieptons are nearly backto-back
- PID as leptons with calorimeter or µ system
 - Some background from γγ-->e⁺e⁻

PHENIX, QM2004

 dN/dm_{ee} (background subtracted) w/ fit to (MC) expected dielectron continuum and J/ Ψ signals:

Triggering

- Trigger on a vector meson + nothing else
 - 2 leptons, roughly back-to-back
 - \sim For J/ ψ , p_T ~ 1.5 GeV
 - Inital trigger based on leptons (+ low multiplicity?)
 - Dileptons, mass, p_T, angle cuts possible at higher levels
- No ZDCs in trigger
 - To study VM production both with and without nuclear excitation
 - ZDCs can't be used in Level-0, due to timing constraints, so aren't very useful.
- Biggest challenge for UPCs

Open Charm/Bottom

- Occurs via gluon exchange
 - Well described in QCD (& tested @ HERA)
 - Sensitive to gluon distribution
 - x and Q² depend on final state configuration (M(QQ)...)
 - Wider range of Q² than vector meson production
- High rates
 - σ (charm) ~ 1.8 barns ~ 25% of $\sigma_{hadronic}$
 - σ (bottom) ~ 700 µb ~ 1/10,000 of $\sigma_{hadronic}$
 - (without shadowing)
- One nucleus breaks up
- tt possible in pA collisions
 - Measure charge of top quarkein, LBNL

Charm kinematic distributions

S. Klein, LBNL

shadowing

SK, Joakim Nystrand & Ramona Vogt, 2002

Charm Reconstruction

- cc reconstruction
- Well-understood techniques
 - Direct Reconstruction of charm
 - Should be feasible in all 3 large LHC detectors
 - Low efficiency to reconstruct both c and cbar
 - Semi-leptonic decay
 - Should be able to detect leptons from dual semi-leptonic decay

Separating Photoproduction and Hadroproduction

- Photoproduction of charm is very favorable
 - ♦ P(γ --> cc) ~ 4/10
- Cross Sections are large
 - σ (charm photoproduction) ~ 1.8 barns
 - For lead at the LHC
 - No shadowing
 - σ (charm hadroproduction) ~ 240 barns

SK, Joakim Nystrand & Ramona Vogt, 2002

S. Klein, LBNL

Rejecting Hadroproduction

- Single nucleon-single hadronic interactions
 - Eliminate more central reactions with multiplicity cut
 - ∽ σ_{1n1n} ~ 700 mb
 - σ_{1n1n} , with charm ~ 5.5 mb
 - $\sigma_{b>2R}$ with charm ~ 1100 mb
- One nucleus remains intact
 - Assume <10% chance</p>
- Particle-free rapidity gap around photon emitter
 - ◆ P~ exp(-∆y dN/dy)
 - dN_{ch}/dy ~ 4.4 at midrapidity for pp the LHC
 - 40% lower at large |y|
 - For ∆y= 2 units, P ~ 0.005
 - $\sigma_{\text{remaining}}$, with charm ~ 3 µb

SK, Joakim Nystrand & Ramona Vogt, 2002

S. Klein, LBNL

Triggering

Direct Charm decays

 Trigger may be tough

 Semileptonic decays

 Use leptons, as with vector mesons
 May get some usage out of multiplicity detectors

Other channels

Dijets

Large rates

σ(E_T> 20 GeV) ~ 1/minute

Separating photoproduction and hadroproduction may be difficult

Photon + jet (Compton scattering)

Distinctive signature
σ (1% of dijet rate)

Ramona Vogt, 2004

'New Physics'

- γγ --> Higgs --> bb
 - Rate is very low
 - Probably not the 'discovery' channel
 - Most attractive with lighter ions, or pA (or pp)
 - Important in establishing the nature of the Higgs
 - Is it the standard model Higgs?
- Photoproduction of W⁺W⁻
 - Study γWW vertex
 - Can be sensitive to new physics
- γγ production of magnetic monopoles
 - γγ is the preferred channel

Other UPC@LHC studies

- Vector Meson Spectroscopy
 - Rates are very high
 - σ(ρ) ~ 5.2 barns
 - $\sigma(\rho^*(1450/170))$ down by factor of 10
 - *∽* σ(ω,φ) ~ 460-490 mb
- e+e⁻ pair production
 - Tests QED in very strong fields
 - In grazing b=2R collisions ~ 5 e⁺e⁻ pairs are produced
 - Enormous rates
 - Studied in ALICE; σ~13,000 barns in inner silicon
 - A trigger is probably not needed
- Quantum correlations in multiple Vector Meson Production

Conclusions

- UPC photoproduction is sensitive to parton distributions in ions and protons, and can test models of low-x behavior.
- Vector mesons and open charm can be studied at the LHC
 - The analyses seem relatively straightforward.
 - Attention to the trigger is required to collect the data required for these analyses.
- Many other UPC studies are possible