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Why p-A @ LHC?

Baseline
— Show that effects observed in A-A are unique.
— Calibrate “nuclear effects” in A-A

Measure nuclear PDF’s at low x
— Shadowing, leading twist vs higher twist
— Saturation & color-glass condensate

Study effects of multiple semi-hard
scattering.

— “Cronin” broadening (also saturation!)

Test factorization (breakdown) in p-A
— A-enhanced power corrections

Study (fmal-state) interaction of various



p-A Collisions @ LHC

In summary. the pA program at the LHC serves a dual role. It 1s needed to calibrate the A4 mea-
surements for a sounder interpretation. It also has mitrinsic merits in the framework of a more profound
understanding of QCD (e.g. shadowing vs. diffraction, nonlinear QCD and saturation. higher twists...).
Thus, one should foresee three key steps in this program: (1) (pp and) pPb runs with reliable deter-
mination of centrality at the same collision energy as PbPb interactions: (2) a systematic study of pA
collisions. requiring a variety of collision energies and nucler as well as a centrality scan: and (3) an -
terchange of p- and A-beams for asymmetric detectors. The expected physics output from measurements
of hard and semi-hard probes in pA collisions at the LHC may be summarized as follows. We are able to

e test the predictive power of QCD perturbation theory in nuclear collisions by verifying the apphi-
cability of factorization theorems and the universality of the nPDFs through the hardest probes.
only available at the LHC — Secs. 3 and 5.

e measure the nuclear effects (mternal to the nucleus) in the nPDFs over an unprecedented range of
r and (): imvestigate the interplay between the “EMC™ effect, nuclear shadowing and saturation as
well as the transverse-coordinate dependence of the nPDFs: and possibly, discover a new state of
matter, the color glass condensate. by probing very soft gluons in heavy nuclei through the rapidity
dependence — Sec. 4.

e determine the nuclear dependence of the cross sections of the senu-hard probes in pA collisions
and study QCD multiple parton scattering in nuclear matter and its corresponding dependences
beyond the universal nuclear effects included in the nPDFs — Sec. 6.

e extract excellent information on QCD dynamics in hadronization because normal nueclear matter
acts like a filter for color neutralization and parton hadronization and explore potential new QCD
phenomena in pA collisions. such as diffraction mto three jets. double PDFs, ete. — Sec. 7.

e use the hard and semi-hard probe cross sections as references for the QGP signals in AA collisions:
the hard probes set the benchmark of the applicability of factorization while the semi-hard probes
help to understand the size of the nueclear modifications not caused by the dense medium produced
in AA collisions.

e Summary of LHC “Yellow Report” on p-A



P-A (@ LHU: NOT Just a good laea

Particle production é;\.d hard scattering in A-A
collisions dominated by low-x partons
(gluons)

Large gluon densities @ low x:
— Large contributions from non-leading twist
— Strong unitarity correctionsdq,

BFKL evolution may dominate over DGLAP for
moderate Q? (~[10 GeV]?) processes

Initial conditions of Pb-Pb collisions will be
determined by emission of multi-GeV gluons

— Strongly affected by above (saturation, color-
glass, ?)

Even “hard” processes may be affected
Essential that we have p-A measurements to



P-A @ LIITuL. vonerence
View in nhucleus rest frame
* For mid-rapidity jet with M+

— Relative to nucleus, Ay = &8

— E=p, =M, cosh(Ay) = 1500 M,

— Lorentz boost: y=cosh(y) = 1500
e Also, Jet formation time: 7 ~7/

myr

e Giving (jet) formation length

e From this simple analy$ts\we can conclude:
_ Even for 100 GeV jet, formation 187§th™ Hlicieon

spacing
— For ~ 10 GeV jets, formation occurs over ~ full nucleus
 So we should expect strong coherence effects

 But if we have =5 units of acceptance we can

Arhanmna tha farmatinn lanAathh o fantar afs 1NN01
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P-A (@ LHU: Important
Observables

Event properties: dE;/dn, dN_, /dn, ...

Single Jet production:

— Rates: d°N/dndE*t min-bias and vs
centrality

— Fragmentation: D(z), hadron J+, sub-jets
— Above for b-tagged jets
— How low in E; can we go?

Directy, Z, W production: d*N/dndp-
Di-jets/y-jet/Z-jet/di-y:

- Rates vs Ery/Eqp, (N4, M)

— Angular distributions (Ad)

Heavy flavor: open charm, single
lentons.

chg



Low-x Effects @ LHC

Frankfurt, Guzey, Strikman:
L eading twist Shadowing
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 Measurable shadowing
even at 100 GeV.

Armesto, Salgado, Wiedemann,
Phys. Rev. L ett. 94:022002 (2005)
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e Modest effects at
mid-rapidity (but
going away slowly)



Saturauon: Heavy Quark
Production

F. Gelis, LHC: p-A workshop

Broadening Only Including Quantum Evolution
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MV saturation produces large Cronin effect

 Butincorporation of BFKL evolution:

— Kills Cronin effect
— Suppressed quark/gluon yields over large p; range



Direct Photon Production

* k; broadening, evolution J. Jdilian-Marian, hep-ph/0501222

of parton distributions _

will modify prompt vy | KKT dipol

spectrum. % 10f
e Calculation for forward

prompty@ RHIC

* |f there are mono-jets, N

R,, (b=0,y=3

are there mono- 0 P

¥,
. pyhj% s more sensitive than di-jets to initial

state because less broadening from jet.

e di-y production even more interesting —
kinematics completely determined.

— Need good photonisolation!



Example: yy from CDF
gi |

Ef>14GeV,EP>13GeV |

102 n"*<0.9
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d; (GeVic)

* Cross-section is small (< 10 of di-jet)
 But even 10 of di-jet rate is OK (below)
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e “Higher Twist”:
— multiple exchanges between
projectile & target.
e Vitev & Qiu: coherent

multiple scattering

o Effective rescaling of x of
parton from deuteron.

1

Vitev and Qiu: Higher Twist
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P-A IN LHU: Jowetl (@ p-A

Woarkshob

Summary and Outlook

m p-Pb upgrade of the LHC appears feasible.
— Some, but not all, of the Pb-Pb problems
— Some, but not all, of the p-p problems

— Some specifically p-Pb beam dynamics problems
deserve further study.

— Modest investment in LHC Main Rings hardware

m d-Pb only slightly easier (from Main Ring beam dynamics
point of view) but would require investment

— See talk on injector chain by C. Carli
m p-(lighter A) seems not to be more difficult than p-Pb.
m Priorities and planning to be promulgated.
m Some experience with the LHC will clarify many things!

eus Collisions at the LHC, CERN 23/5/200% 27



p/d/A-A Collision Energies

From Jowett’stalk @ LHC p-A workshop
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e Due to LHC magnet design (shared field)
— beams must operate @ equal rigidity
— ynn Shifted by = 72 unit in proton direction

 Nominally, different energies for p-p, p-A, A-A
e p-Pb Luminosity: ~ 1.5%102% cm2s-1 (higher?)



Jet Rates (Armesto @ LHC p-A
Workshon)

do™® (Ib/GeV) in pPb
II:lETi
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 Rate estimates (right scale) for L =1.5%x10%° cm2s-1 and
106 s (~ 3 weeks @ 50% efficiency)

e ~million jets above 100 GeV in |n|<2.5 in one LHC run




Jet Pair Rates (Armesto)
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— Very little scale sensitivity

— Very little sensitivity to nuclear PDF
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p-A Collisions: Soft “Background”

e Some numerology:
— @ LHC energies, p-Pb collisions (v) ~ 7
— Due to coherence (wounded-nucleon scaling)
(v) ~ 7 — 4 times soft multiplicity (on average)
— In p-p @ high-luminosity, ~ 25
collisions/crossing
— Typical p-Pb collision has 1/6 the soft
background of high-luminosity p-p collision.
e Conclusion: for high-p; measurements p-Pb
detector performance better than p-p.

 Beware: this argument neglects rapidity
dependence of soft p-Pb/p-p.

— Obhserve: hest nerformance in low X. direction.




Simulated (& Recon) Hijing p-Pb Event #2




Centrality Measurement

 Problem w/ centrality measurement:

— Measurements at mid-rapidity are biased
By hard processes
* By the very low-x physics we want to study

— At RHIC, measurements @ |n| > 3 are “safe”
 Hard processes suppressed by phase space.

— How far out in n is “safe” at LHC (6, 7, 9?)
e Zero-degree calorimeter(s) are useful
— But evaporation neutron yield saturates.
— Can distinguish peripheral from central but ...

e p-A Centrality determination @ LHC needs
careful study by all experiments.




Summary

e p-A collisions @ LHC provide laboratory
for studying:
— Strong field effects in QCD
— Long-range evolution in QCD

— Strong coherence in QCD scattering
processes

— Approach to unitarity limit in QCD scattering.

 This physics is all there in Pb-Pb collisions
— We had better understand it.

e |tis interesting inits own right!

e p-A @ LHC is an “upgrade”
— But itis VERY likely to happen (> 20107?)
— Much work is needed to studv expt.
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AliIcCe. Forwara upslion X
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d-Au “Centrality”
e # soft scatters of n/p:
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Centrality in d(p)-A

The ability to select on centrality in d(p)-A
collisions is NEW and very important.

Potentially the first opportunity to measure the
impact parameter dependence of:

— Initial-state broadening, Shadowing, ...

Observations of centrality dependence have
already been important.

But, there are some limitations:

— Rely on Glauber model to indirectly relate
“centrality” observables to impact parameter.

— Kopeliovich: Flaw in Glauber models due to neglect
of diffraction — which | think is a real issue.

— May be important for understanding Rqp



Di-jet / yv-jet / y-y Acoplanarity (2)

e d-A measurements @ RHIC limited by

— Luminosity and Acceptance

e Both of these limitations are removed in
(e.g.) ATLAS @ LHC

e |solate initial-state radiation effects
(modified in p-A) by comparing:
— Di-jets, (isolated) y -jets, (hard) di-photon
 Prediction from saturation:
— “disappearance” of di-jet signal at p; ~ Q,

— But, presumably measurable (calculable?)
effects at higher p;?? (precision vs
“discovery”)



p-A in ATLAS: Studies Needed

 Basically everything ! But specifically:
— Real simulations of mult. and E; measurement
— Centrality determination.
— Forward jet measurement @ moderate p+
— Measurement of < 20 GeV jets at mid-rapidity.
— v isolation efficiency and rejection vs p+

— Analysis of y-jet kinematic (x,, x,)
reconstruction

— Sensitivity to changes in di-jet/ y-jet/ ...
acoplanarity.

— Double b-tag efficiency, rate (moderate p+).
— Jet overlap, double parton scattering events.




