

LHC as a Heavy-Ion Collider An update

John M. Jowett, Stephan Maury I-LHC Project CERN Presented by Bolek Wyslouch

J.M. Jowett, S. Maury, PANIC05 HI Satellite meeting, 23/11/2005

LHC Pb Injector Chain: Key Parameters for luminosity 10²⁷ cm⁻² s⁻¹

	ECR Source			$\longrightarrow PS 13.12.8 SPS 12 LHC$		
Output energy	2.5 KeV/n	4.2 MeV/n	72.2 MeV/n	5.9 GeV/n	177 GeV/n	2.76 TeV/n
²⁰⁸ Pb charge state	27+	27+ → 54+	54+	54 + → 82+	82+	82+
Output Bp [Tm]		2.28 → 1.14	4.80	86.7 →57.1	1500	23350
bunches/ring			2 (1/8 of PS)	$4 (or 4x2)^4$	52,48,32	592
ions/pulse	9 10 ⁹	1.15 10 ⁹ ¹)	9 10 ⁸	4.8 108	\leq 4.7 10 ⁹	4.1 10 ¹⁰
ions/LHC bunch	9 10 ⁹	1.15 109	2.25 10 ⁸	1.2 108	9 10 ⁷	7 107
bunch spacing [ns]				100 (or 95/5) ⁴	100	100
ε *(nor. rms) [μm] ²	~0.10	0.25	0.7	1.0	1.2	1.5
Repetition time [s]	0.2-0.4	0.2-0.4	3.6	3.6	~50	~10'fill/ring
ϵ_{long} per LHC bunch ³			0.025 eVs/n	0.05	0.4	1 eVs/n
total bunch length [ns]			200	3.9	1.65	1

 $^150~e\mu A_e$ x 200 μs Linac3 output after stripping 2 Same physical emittance as protons,

 $\mathbf{\epsilon}^* \equiv \mathbf{\epsilon}_n = \sqrt{\gamma^2 - 1} \mathbf{\epsilon}_{x,y}$ is \Box invariant in ramp.

J.M. Jowett, S. Maury, PANIC05 HI Satellite meeting, 23/11/2005

Stripping foil

LEIR (Low-Energy Ion Ring)

- Prepares beams for LHC using electron cooling _
- circumference 25m (1/8 PS)
- Multiturn injection into horizontal+vertical+lor gitudinal phase planes
- Fast Electron Cooling : Electron current from 0.5 to 0.6 A with variable density
- Dynamic vacuum (NEG-Au-coated collimators, scrubbing)

First Circulating Beam in LEIR

- Schottky spectrum of the circulating beam of O⁴⁺ ions in LEIR on October 11, 2005.
- Three harmonics of the revolution frequencies around the 100th are shown.
- Beam made full turn of the ring immediately on first injection.
- Circulated for up to 200 ms.
- Vacuum leak problem since then ...

LHC Collisions with Lead Ions

- ²⁰⁸Pb⁸²⁺-²⁰⁸Pb⁸²⁺ collisions
- CM energy 1.15 PeV with nominal dipole field. Beam energy 2.76 A TeV
- ALICE detector specialises in heavy ion physics
- CMS and ATLAS are also interested in heavy ion physics

Thresholds for visibility on BPMs and BCTs.

Example: average luminosity

Average luminosity depends strongly on time taken to dump, recycle, refill, ramp and re-tune machine for collisions.

Average luminosity with 3h turn-around time, in ideal fills starting from nominal initial luminosity.

Maximum of curve gives optimum fill length.

Beams will probably be dumped to maximise average *L* **before** BPM visibility threshold is reached.

No. of experiments: $n_{exp} = 0, 1, 2, 3$

I-LHC Planning

Baseline: Lead-Lead collisions

- "Early Pb Scheme" much easier to achieve for 2008 (and 2009?)
 - Allows study of performance limitations.
- "Nominal Pb Scheme" by 2009 (or 2010?)
 - Pb-Pb is perceived as posing the most difficult accelerator physics problems
- Future "upgrades" not in Baseline:
 - p-Pb collisions under study
 - Effects of revolution frequency difference at injection expected to be *much weaker* than at RHIC
 - lighter ion-ion collisions (e.g. Ca, Ar, O, ...) appear possible without major upgrades, to be studied.

Summary

Operation of LHC with lead ions limited by new effects, qualitatively different from protons

- Several effects important around level of design luminosity (uncertainties in their estimation but some recent grounds for optimism)
- Restricted to a narrow operational range of parameters below the nominal luminosity
- "Early scheme" will allow relatively safe commissioning, access good initial physics
- Study of p-Pb mode has begun, looks promising
- LEIR commissioning has started with some success and some setbacks ...