

ALICE Experiment @LHC (capabilities and status)

Grazyna Odyniec / LBNL for the ALICE-USA Collaboration

Designed for the PbPb environment with <u>all</u> the capabilities of **STAR** and **PHENIX**

ALICE-USA Collaboration

<u>high pt physics</u>: jets, γ -jet, ...

EMCal

UC Davis UCLA **Creighton U U** of Houston Kent State U LBNL LLNL MSU **ORNL** OSU **Purdue U U** of Tennessee **U** of Washington Wayne State U

Grazyna Odyniec

PANIC'05 Satellite Meeting: Heavy Ion Physics at the LHC, October 23, 2005

Main focus:

LHC on track

- LHC on track for start-up of pp operations in April 2007
- Pb-Pb scheduled for 2008
 - Each year several weeks of HI beams (10⁶ s effective running time)
- Future includes other ion species and pA collisions.
 - LHC is equipped with two separate timing systems.

System	$L_0 [{ m cm}^{-2}{ m s}^{-1}]$	√s _{NN max} [TeV]	Δy
Pb+Pb	1 1027	5.5	0
Ar+Ar	6 1028	6.3	0
O+O	2 10 ²⁹	7.0	0
pPb	1 1030	8.8	0.5
рр	1 10 ³⁴	14	0

First 5-6 years

- 2-3y Pb-Pb 2y Ar-Ar 1y p-Pb
- (highest energy density) (vary energy density) (nucl. pdf, ref. data)

- LHC will accelerate and collide heavy ions at energies far exceeding the range of existing accelerators energy jump by a factor of 28 !
- This is expected to result in:
 - A hotter and longer lived partonic phase
 - Increased cross sections and availability of new hard probes
 - New properties of initial state, saturation at mid-rapidity

K.Kajantie, Nucl.Phys. A715 (2003) 432c:

"Qualitatively, in minimum-bias Pb+Pb (or Au+Au) collisions, SPS is 98% soft and 2% hard, RHIC is 50% soft and 50% hard and <u>LHC is 2% soft and 98% hard</u>" \implies each LHC HI min bias collision produces hadron of high p_t in the process involving perturbative scale Q >> LQCD"

New at LHC: dominance of hard processes

Happens at t=0 \rightarrow probe matter at very early times (QGP ?)

Can be calculable by pQCD \rightarrow predictions

Access to new region of x (x<<1):

- Probe initial partonic state in a novel Bjorken-x range (10⁻³-10⁻⁵):
 - nuclear shadowing,
 - high-density saturated gluon distribution.
- Larger saturation scale $(Q_s=0.2A^{1/6}\sqrt{s}=2.7 \text{ GeV})$: evolution (non-linear ?) of a saturated gluon distribution, which generates the bulk properties of the collision, measured at mid-rapidity.
- The QGP at LHC might evolve from a Color Glass Condensate in the initial state of the collision.

Grazyna Odyniec

RHIC and LHC

Central collisions	SPS	RHIC	LHC
s ^{1/2} (GeV)	17	200	5500
dN _{ch} /dy	500	650	3-8 x10 ³
ε (GeV/fm ³)	2.5	3.5	15-40
V _f (fm ³)	10 ³	7x10 ³	2x10 ⁴
$ au_{ m QGP}(m fm/c)$	<1	1.5-4.0	4-10
$\tau_0 (fm/c)$	~1	~0.5	<0.2

As compared to RHIC:

•Energy density higher ~x(4-10)

- •Volume larger ~x3
- •Life-time longer ~x2.5

High rates for hard processes (one year of running for -1<y<1):

- •5 10¹⁰ open charm pairs
- •2 10⁹ open beauty pairs
- •1 10⁹ jets (E_T>20 GeV)

Numerical predictions: Energy Density in Lattice QCD

with 2 and 3 light quarks and with 2 light and 1 heavy (strange) quark at μ_B =0

 $\mu_B \sim 0$ and T~ 3-4 T_c (close to ideal conditions) makes comparison to theory reliable !

Grazyna Odyniec

Predictions for the LHC ?

very, very difficult

- Experience from the past:
 - Verified predictions: strangeness enhancement (SPS), jet quenching (RHIC);
 - Wrong predictions: large event by event fluctuations (SPS), particle density (RHIC);
 - Unexpected surprises: J/ψ suppression (SPS), large elliptic flow (RHIC).
- Lesson for the future:

while guided by theory and extrapolations be prepared for unexpected when making big steps in energy

 $\mathsf{SPS} \longrightarrow \mathsf{12} \longrightarrow \mathsf{RHIC} \longrightarrow \mathsf{28} \longrightarrow \mathsf{LHC}$

Solenoid magnet 0.5 T Cosmic rays trigger

Specialized detectors:

HMPID

PHOS

Central tracking system: • ITS

> • TPC • TRD • TOF

Forward detectors:

PMD

ON Spectrometer:
absorbers
tracking stations
trigger chambers
dipole

ALICE Physics Program I (has to cover in one experiment what at RHIC was covered by 4 !)

- Global observables:
 - multiplicities, η distributions
- Degrees of freedom as a function of T:
 - hadron ratios and spectra
 - dilepton continuum, direct photons
- Geometry of the emitting source:
 - HBT, impact parameter via zero-degree energy
- Early state manifestation of collective effects:
 - elliptic flow

- Deconfinement:
 - charmonium and bottomium spectroscopy
- Energy loss of partons in quark gluon plasma:
 - jet quenching high pt spectra
 - open charm and open beauty
- Chiral symmetry restoration:
 - neutral to charged ratios
 - resonance decays
- Fluctuation phenomena critical behavior:
 - event-by-event particle composition and spectra
- pp collisions in a new energy domain

Experimental Requirements

Challenge !

- ALICE must meet the challenge to measure flavor content and phase-space distribution event-by-event:
 - Most (2p * 1.8 units h) of the hadrons (dE/dx + ToF), leptons (dE/dx, transition radiation, magnetic analysis) and photons (high resolution EM calorimetry)
 - Track and identify from very low (< 100 MeV/c, soft processes) up to very high p_t (~100 GeV/c, hard processes)
 - Identify short lived particles (hyperons, D/B meson) through secondary vertex detection
 - Identify jets

how ALICE will do it ?

4 cm < r < 44 cm

- robust, redundant tracking from 60 MeV to 100 GeV
 - long lever arm => very good momentum resolution
 - silicon vertex detector (ITS)
 - stand-alone tracking at low pt

- Exclusive reconstruction \longrightarrow direct measurement of the p_t distribution \longrightarrow ideal tool to study R_{AA}
- Main selection: displaced-vertex selection
 - pair of opposite-charge tracks with large impact parameters
 - good pointing of reconstructed D⁰ momentum to the primary vertex

The ALICE program in 2007 onwards

$$\sigma^{\text{PbPb}} = 8 \text{barn}; L^{\text{PbPb}} = 10^{27} \text{cm}^{-2} \text{s}^{-1}; t_0 = 04/2007 \text{ now}!$$

- The first 15 minutes; $L_{int} = 1 \mu b^{-1}$
 - Event multiplicity, low p_t hadronic spectra, particle ratios
- The first month; $L_{int}=0.1-1nb^{-1}$
 - Rare high p_t processes: jets, D,B, quarkonia, photons, electrons
- The following years:
 - pA, A scan, E scan

ALICE-USA special focus: jets !

- Partons traversing a colored dense medium undergo energy and direction degradation characteristic of the medium through gluon radiation
- The degradation is reflected through the hadronisation process
- Materialize in detectors as jets of hadrons spatially localized in a narrow cone

Jet Phase Space

Jet physics will dominate the LHC heavyion program, ALICE will be the main contender in the race for jet quenching

Jets from Correlations and Leading Particles

Reconstructed Jets

how?

Best signature of jet quenching: <u>longitudinal and transverse</u> (with respect to jet axis) <u>distribution</u> <u>of individual hadrons :</u>

- kinematic study:

from unquenched to quenched jet by varying collision centrality from low/moderate p_T (quenching

dominates) to highest p_T (quenching insignificant)

- path length dependence:

e-by-e flow study

- specifics of fragmentation function:

particle ratios $(\Lambda/\Lambda, \overline{p}/p, ...)$ at high p_T [dE/dx(g)~ 2 dE/dx(q)] modifications of heavy quark fragmentation function

ALICE-USA building EMCal

Pb-scintillator sampling calorimeter

- -0.7 < η < 0.7
- $\Delta \phi = 120$ degrees Energy resolution ~15%/ \sqrt{E}

Grazyna Odyniec

PANIC'05 Satellite Meeting: Heavy Ion Phy

12 super-modules13824 projective towerstower: δηxδφ~0.014x0.014

EMCal :

- trigger (p_t sensitive) enhancing ALICE jet yields by factor of ~200 (!)

- jet composition PID γ , π 0, e
- total jet energy (including neutral)
- γ-jet studies

CMS and ATLAS have world-class calorimetry with very broad kinematic coverage: what can ALICE add to jet physics in heavy ion collisions at the LHC?

Essential jet measurements: modification of fragmentation in dense matter + response of the medium to the jet

- \Rightarrow cross-sections are huge: rate not a primary issue
- \Rightarrow hermeticity not important in heavy ions
- \Rightarrow calorimetry insufficient: physics lies in detailed changes of fragmentation patterns and correlations, including low p_T

Requirements for jet measurements in heavy ions:

- \Rightarrow precise tracking over very broad kinematic range (TPC+ITS)
- \Rightarrow PID over broad kinematic range
- \Rightarrow detailed correlations of soft and hard physics
- \Rightarrow jet trigger (EMCAL)

ALICE+EMCal bring unique capabilities to LHC heavy ion program

Tower/module structure: "shashlik" design

Trapezoidal module: transverse size varies in depth from 63x63 to 63x67 mm²

78 layers of 1.6 mm scint/1.6 mm Pb Moliere radius ~ 2 cm

Supermodules

12 super modules, each has 1152 towers projective in η $0.0 < |\eta| < 0.7, \Delta \phi = 20^{\rm o}$

Jet reconstruction in Alice

• JetFinder algorithm (S.Blyth MSc) developed (submitted to NIM)

Measurements: Jets in Pb+Pb events at LHC

At higher p_t, jets are identifiable as distinct objects above the Pb+Pb background

Is there a measurable jet energy loss?

Grazyna Odyniec

Present situation: Construction of EMCal support structure Prototype tests (Fermilab, Nov.05)

Grazyna Odyniec

Test Beam @ FermiLab – November 05

- 64 tower prototype and test infrastructure nearing completion at WSU
- ALICE/PHOS DAQ nearing completion at ORNL/BNL
- FermiLab meson test beam scheduled for 3 weeks in November
- Goal: Preliminary test results of our design

Fermi Lab Test Beam Area MT6

MT6 Test Beam User Areas

Grazyna Odyniec

Modules 1 through 12

Fiber Bundle

Cosmic test

ALICE

ALICE-USA: UC Davis UCLA **Creighton U U** of Houston Kent State U LBNL LLNL MSU ORNL OSU Purdue U **U** of Tennessee **U** of Washington Wayne State U

6 2004