

Heavy-Ion Physics with the CMS Experiment at the Large Hadron Collider

Bolek Wyslouch Massachusetts Institute of Technology for the CMS Collaboration

PANIC05 LHC Satellite meeting

CMS HI groups: Athens, Basel, Budapest, CERN, Demokritos, Dubna, Ioannina, Kiev, Kent State, Krakow, Los Alamos, Lyon, MIT, Moscow, Mumbai, N. Zealand, Protvino, PSI, Rice, Sofia, Strasbourg, U Kansas, Tbilisi, UC Davis, UC Riverside, UI Chicago, U. Iowa, Yerevan, Warsaw, Zagreb

October 23, 2005

CMS Heavy Ions

CMS

Summary of physics opportunities

LHC will accelerate and collide heavy ions at energies far exceeding the range of existing accelerators

• The increase of beam energy will result in:

- Extended kinematic reach for pp, pA, AA
- New properties of initial state, saturation at mid-rapidity
- A hotter and longer lived partonic phase
- Increased cross sections of hard probes
- New experimentally accessible hard probes

New energy regime will open a new window on hot and dense matter physics: another large energy jump!

	AGS	SPS	RHIC	LHC (Pb+Pb)
√s _{NN} [GeV]	5	20	200	5500
E increase		x4	x10	x28
y range	±1.6	±3.0	±5.3	±8.6

Heavy-Ion Physics at the LHC

- Medium modification at high p_T
 - Copious production of high p_T particles
 - Large jet cross section,
 - Different "melting" for members of *Y* family depending on binding energy
 - Large cross section for J/ψ and Υ family production

Correlations, scattering in medium

• jets directly identifiable

Kinematics at the LHC

CMS as a Detector for Heavy-lon Physics

Fine Grained High Resolution Calorimeter

- Hermetic coverage up to $|\eta| {<} 5$
- ($|\eta|$ <7 proposed using CASTOR)
- Zero Degree Calorimeter (proposed)
- **Tracking** μ from Z⁰, J/ ψ , Υ
 - Wide rapidity range $|\eta|$ <2.4
 - σ_m ~50 MeV at Υ

Silicon Tracker

- Good efficiency and low fake rate for p_T>1 GeV
- Pixel occupancy at 1-2% level even in Pb+Pb
- Excellent momentum resolution △p/p~2% for p_T<70 GeV and higher

Fully functional at highest expected multiplicities

Detailed studies at ~dN_{ch}/d\eta ~3000-5000 and cross-checks at 7000-8000

DAQ and Trigger

- High rate capability for A+A, p+A, p+p
- High Level Trigger capable of full reconstruction of most HI events in real time

$\mu \text{ chambers}$

CMS under construction

Muon Absorber

Swiveling coil

October 23, 2005

Electromagnetic Calorimeter

Bolek Wyslouch

Hadron Calorimeter

DAQ

Si tracker & **Pixels**

Measuring Muons

The Tracking Device

The CMS all Silicon Tracker

~ 60 Million electronics channels

Oct

Tracker Layout

- **—** 1 Single detector
- 2 detectors back to back

CMS tracker is a powerful tool

Multiple layers of Si pixel and Si strip detectors will give us plenty of information about charged tracks

Level 1 hardware trigger

- Muon track segments
- Calorimetric towers
- No tracker data
- Output rate (Pb+Pb): 1-2 kHz comparable to collision rate

High level trigger

- Full event information available
- Every event accepted by L1 sent to an online farm of 2000 PCs
- Output rate (Pb+Pb): ~ 40 Hz
- Trigger algorithm same or similar to offline reconstruction

Every event must pass the whole chain Selectivity depends on available CPU CMS Heavy Ions Bolek Wyslouch 12

CMS advantages compared to other HI experiments

October 23, 2005

CMS Heavy Ions

Hermeticity, Resolution, Granularity

 Central region Δη~5 equipped with tracker, electromagnetic and hadronic calorimeters and muon detector

Forward coverage

- Base-line calorimeters extend the coverage to Δη~10
- Proposed additional calorimeter CASTOR extends the coverage to $\Delta\eta$ ~14
- High data taking speed and trigger versatility
 - Unique two-level trigger system
 - Potential ability of "inspecting" every fully built heavy ion event on the High Level trigger farm processors

<u>dn</u>ch dŋ

1000

800

600

400

200

Ω

Expectation based on RHIC results: Charged particle multiplicity

Wit Busza, (MIT) @ CMS Workshop, June 2004

WHEN CMS STARTS TAKING DATA WITH HEAVY IONS THIS IS THE FIRST RESULT THAT WE WILL OBTAIN

•Determines Physics Landscape

 Influences Detector Performance

CMS Physics studies conducted for multiplicity densities up or larger than $dN_{ch}/d\eta$ =5000 Muon detection, tracking, jet finding

October 23, 2005

- Use high granularity pixel detectors
- Use pulse height measurement in individual pixels to reduce background
- Very low p_T reach, p_T>26 MeV (counting hits!)

Match Reconstructed tracks to MC input on a hit by hit basis.

(Event sample: dn/dy ~3000 + one 100GeV Jet/Event)

• Excellent resolution event at the highest particle densities

0	cto	ber	23.	20	05
\sim			,		00

CMS Heavy Ions

Optimization of track reconstruction: efficiency and fake tracks

Low fake rate

High efficiency

Reaction Geometry in CMS: forward detectors

Quarkonia in CMS

Opposite sign dimuon invariant mass (GeV/c^2)

σ_{MY} =50 MeV

Expect ~24k J/ ψ and ~ 18/5/3 k $\Upsilon, \Upsilon', \Upsilon''$ After one month of Pb+Pb running at L=10²⁷cm⁻²s⁻¹ with 50% efficiency

Coverage in central rapidity region

- Only a small fraction of produced J/ψ are seen in LHC detectors
 - E.g. CMS J/ $\psi \rightarrow \mu\mu$ acceptance 0.1-0.2%, ~O(10⁴) per LHC run
- **Detection of low p_T J/\psi requires efficient selection of low momentum, forward** going muons. Simple hardware L1 dimuon trigger is not sufficient

Without online farm (HLT) With online farm (HLT)

L1 trigger	Τωο μ	60 Hz	L1 trigger	Single µ	~2 kHz
L2 trigger	None	60 Hz	L2 trigger	Re-fit μ	70 Hz
L3 trigger	None	60 Hz	L3 trigger	Match tracker	<40 Hz
J/ψ p _T		>3 GeV/c	J/ψ p _T		>1 GeV/c

Jets in heavy ion collisions, role of LHC

- Production of high p_T partons involves hard, perturbative scale Q>>A_{QCD}.
- Q is much larger than any momentum scale characterizing the medium (production unaffected by the medium)
- Initial "luminosity" modified by nuclear effects
- Parton shower development affected by the medium
- At LHC in A+A collisions:
 - \bullet wider \textbf{p}_{T} range for suppression studies
 - partons will appear as jets for E_T > 20-30 GeV, their structure will likely be modified compared to jets produced in p+p

Note: comparison to p+p and p+A is essential

- High p_T particles and particle correlations
- Jet rates: single jets, multi-jets
- Jet fragmentation and shape
 - distance R to leading particle
 - $p_{\rm T}$ of particles for $R < R_{\rm max}$
 - Multiplicity of particles for R < R_{max}
 - Heating: k_T = p × sin(θ(particle, jet axis))
 - Forward backward correlation: Δφ(particle, jet axis)
 - Fragmentation function: F(z)=1/N_j×dN_{ch}/dz z=p_t/p_{jet}
- Rates and shape aided by correlations Jets+γ, Jets+Z
- Jets originating from heavy quarks (b, c)

Extensive theoretical and experimental preparatory work presently in progress

Jet Reconstruction in CMS using Calorimeters

October 23, 2005

CMS Heavy Ions

Charged Particle Jet Studies in CMS

- Detailed study of phenomena which are already apparent at RHIC
- Study the centrality dependence of:
 - Charged particle spectra starting at $p_T \sim 1 \text{ GeV}$
 - ◆ Possibly lower p_T cutoff with reduced B field
 - Back-to-back particle correlations
 - Azimuthal asymmetry vs. p_T

Jet fragmentation

Fragmentation function for 100 GeV Jets embedded in $dN_{ch}/dy \sim 5000$ events.

High precision tracking out to high momenta will allow for detailed jet shape analysis to study the energy loss mechanism

October 23, 2005

CMS Heavy Ions

Future jet studies: new generators

Need better jet modeling at LHC: HYDJET

- Soft particle production using Hydrodynamic model, includes flow
- Jets produced using PYQUEN (PYTHIA with medium-induced quenching)
- Full control of soft and hard physics assumptions
- Improvement compared to available generators
 - Centrality/geometry dependence
 - Energy loss modeling
 - Consistency with RHIC results

New CMS simulations in progress:

• Physics "Technical Design Report" in preparation

HYDJET tuned to RHIC data

(I.P. Lokhtin and A.M. Snigirev, hep-ph/0506189)

Conclusions

- LHC will extend energy range and in particular high p_T reach of heavy-ion physics
- CMS is preparing to take advantage of its capabilities
 - Excellent rapidity and azimuthal coverage and high resolution
 - Quarkonia
 - ♦ Jets
 - Centrality, Multiplicity, Energy Flow reaching very low p_T
 - Essentially no modification to the detector hardware
 - New High Level Trigger algorithms specific for A+A
 - Zero Degree Calorimeter, CASTOR and TOTEM will be important additions extending forward coverage
 - Heavy-lon program is well integrated into the overall CMS Physics
 Program
- Detector construction is very well advanced and we MUST work hard to be ready for first beams (including pp)
- The extrapolations/predictions/modeling work must go on to be able to connect expected RHIC and LHC results and learn new physics from these comparisons