





### Heavy Ion Physics at the LHC, PANIC 2005 Santa Fe, NM



## ALICE at High p<sub>T</sub>



#### A.Dainese, ALICE talk



1 year ALICE: ~10<sup>3</sup>  $p_t$  > 50 GeV Identified particles: D<sup>0</sup> to 15 GeV  $\Lambda$  to 12 GeV,  $\gamma/\pi^0$  to 100 GeV

Tracking capabilities for low  $p_T < 1$  GeV

dN/p<sub>T</sub>, (GeV/c)<sup>-1</sup> Stand-alone trigger Normal ALICE trigger  $\pi^0$ 10 70 50 60 80 90 100 p<sub>T</sub> (GeV/c) ITS+TPC, Pb-Pb Efficiency 09 0.8 0.7 0.6 0.5 0.4 pions 0.3 kaons 0.2 0.1 0<sup>t</sup> 10<sup>-1</sup> 10 p, [GeV/c]

Ivan Vitev, LANL

October 23, 2005

Particle ID



## **ATLAS for Heavy lons**







Hermetic calorimeter  $|\eta| < 4.9$   $\Delta \eta \Delta \Phi = 0.025 \times 0.025$  (e.g.) EM; 0.1x0.1 Hadronic Large acceptance  $\mu$ -spectrometer  $|\eta| < 2.7$ Silicon Tracker  $|\eta| < 2.5$ Finely segmented pixel and strip detector (SCT) Good resolution  $p_T \ge 0.5$  GeV



## **CMS for Heavy lons**



### Silicon Tracker Excellent momentum resolution ∆p/p~1%

### Fine Grained High Resolution Calorimeter (E-cal+H-cal) Hermetic coverage up to |η|<5

### **Muon Reconstruction**

Tracking  $\mu$  from Z<sup>0</sup>, J/ $\psi$ ,  $\Upsilon$ Wide rapidity range  $|\eta|$ <2.5







100GeV Jet in a Pb+Pb event (after background subtraction)

October 23, 2005





### • Single inclusive particle quenching at high $p_T$ :

Careful implementation of valid e-loss approaches. Centrality and particle species dependence. Heavy flavor energy loss

Light mesons  $\pi^0$  to 100 GeV (ALICE), Baryons to 10 – 15 GeV? (ALICE) Heavy flavor D-mesons to 15 GeV (ALICE)

# • Tagged $\gamma$ , $Z^0$ inclusive (multi) hadrons:

Realistic differential calculations of double differential gluon
 distribution. Integration in jet shape formalisms. Redistribution of the energy.

Above few GeV ("FFs") (ATLAS) Particle distributions in the jets  $k_T > 1$  GeV (CMS)

### • High $E_T$ jets at Y = 0 and $Y \neq 0$ , jet correlations:

High E<sub>T</sub> TeV jets, algorithm dependence, energy loss as a function → of Y, jet correlations with large rapidity gaps

Millions of > 200 GeV Jets (ATLAS, CMS). Large |y|<5 coverage (ATLAS, CMS)





Ivan Vitev, LANL

### Unprecedented new capabilities for high $p_T$ and jet physics







Ivan Vitev, LANL



Longitudinal size:  $\sim 1/2m_N x$ If x < 0.1 then  $\Delta z > r_0$ Transverse size:  $\sim 1/Q$ If  $Q < m_N$  then exceed the parton size

 Interactions will happen coherently but this does not mean that they don't have substructure – at high p<sub>T</sub> single hard scattering dominates

$$\begin{array}{c} \textbf{Condition:} \quad p_{T}^{\ 2} > \mu^{2}L/\lambda, \ \xi^{2}A^{1/3}, \ Q_{s}^{2} \\ \\ \frac{dW_{h}}{d^{2}p_{t}}(x,b,\beta) \ = \ \Gamma_{h}(x,b-\beta) \sum_{\nu=1}^{\infty} \frac{1}{\nu!} \int \Gamma_{A}(x_{1}',b) \dots \Gamma_{A}(x_{\nu}',b) \ e^{-\int dx' \Gamma_{A}(x',b)\sigma(xx')} \\ \\ \times \ \frac{d\sigma}{d^{2}k_{1}} \dots \frac{d\sigma}{d^{2}k_{\nu}} \ \delta^{(2)}(\mathbf{k}_{1} + \dots + \mathbf{k}_{\nu} - \mathbf{p_{t}}) \ d^{2}k_{1} \dots d^{2}k_{\nu} \ dx_{1}' \dots dx_{\nu}' \\ \\ \langle p_{t}^{2}(x,b) \rangle_{A} \sim \left\{ \begin{array}{c} \langle p_{t}^{2}(x,b) \rangle_{1} & \text{as } p_{0} \rightarrow \infty \\ \langle p_{t}^{2}(x,b) \rangle_{1} \langle n_{A}(x,b) \rangle & \text{as } p_{0} \rightarrow 0 \end{array} \right. \\ \\ \textbf{A.Accardi and D.Treleani, Phys.Rev.D 64 (2001)} \qquad \xi^{2} = 0.1 - 0.2 \ GeV^{2} \end{array} \right.$$



## **Coherent Power Corrections**



 $t = \omega$ 





## **pQCD Jets and Hadrons**



Ivan Vitev, LANL







# **Medium-Induced Bremsstrahlung**







## **E-Loss Calculations**

Ζ

(Zakharov)



### **3** Theoretical approaches

(Gyulassy-Levai-Vitev)

**GLV** 

Momentum space T-matrix expansion approach

No Gaussian approximation

Expansion in the # scattering correlations

(D)GLV V

(Djordjevic - GLV)





### Heavy quarks Twist expansion

BDMPS

(Baier-Dokshitzer-Muller Peigne-Schiff)

2D Schrödinger equation approach

Gaussian approximation

Evaluated at the mean

Beware of "improvements"

Gaussian approximation

Light cone path

Integral approach

Evaluated at the mean



(Wiedemann)

**Summary articles** 

M.Gyulassy, I.V.,X-N.Wang, 'Quark-gluon plasma III, nucl-th/0302077

A.Kovner, U.Wiedemann, 'Quark-gluon plasma III, nucl-th/0304151

R.Baier et al., Ann.Rev.Nucl.Part.Sci.50 (2000)

#### **Papers**

• G. Bertsch, F. Gunion, Phys. Rev. D25 746 (1982)

• M. Gyulassy, X.-N. Wang, Nucl. Phys. **B420** 583-614 (1994); Phys. Rev. **D51** 3436-3446 (1995)

• R. Baier, Yu. Dokshitzer, A. Mueller, S. Peigne, D. Schiff, Nucl. Phys. **B483** 291-320 (1997); Phys. Rev. **C58** 1706-1713 (1998)

• B. Zakharov, JETP Lett. **65** 615-620 1997, JETP Lett. **73** 49-52 (2001)

• M. Gyulassy, P. Levai, I.V., Nucl. Phys. **B594** 371-419 (2001); Phys. Rev. Lett. **85** 5535-5538 (2000)

• U. Wiedemann, Nucl. Phys. **B588** 303-344 (2000), Nucl. Phys. **B582** 409-450 (2000)

### Ivan Vitev, LANL



 $\mu(RHIC) = gT \sim 1 \ GeV \qquad \hat{q} = 4 - 14 \ GeV^2 / fm \qquad \lambda = 0.25 - 0.07 \ fm$  $\mu(LHC) = gT \sim 2 \ GeV \qquad \hat{q} = 30 - 100 \ GeV^2 / fm \qquad \lambda = 0.125 - 0.04 \ fm$ 

$$\Delta E^{(1)} \propto \frac{C_R \alpha_s}{2} \left(\frac{\mu^2}{\lambda}\right)_0 \tau_0 L \dots$$

The constraint (all approaches): Inconsistent with large number of scatterings approximation  $\sim e^{-\lambda\mu}$ 

Ivan Vitev, LANL



## **Single Inclusive Quenching**







Very important to be tested – establish the role of kinematics dN<sup>9</sup>/dy=2000-3500  $T_{AA}d\sigma^{pp}$ versus dynamics - dN<sup>9</sup>/dy=900-1200 • The density dN<sup>g</sup>/dy at the LHC 0.5 is assumed 2-3 times larger LHC  $R_{AA}(p_{T})$ RHIC  $\Delta E \propto dN^{g} / dy B jorken$ • This p<sub>T</sub> range is dominated by gluons, not quarks, at the LHC A+A at  $s^{1/2}$  = 200, 5500 AGeV  $\Delta E \propto C_A = 3$  gluons,  $C_F = 4/3$  quarks 0.1 (analog to el. charge squared) 20 25 30 35 40 15 p<sub>T</sub> [GeV]

> Can be only achieved only through comparison of similar quenching under different physics conditions

In spite of these factors in the

or larger than at the LHC

**30-40 GeV range the suppression** 

at RHIC increases - comparable



# (Di)Hadrons and Feedback Energy







# **Example of E-Redistribution**



- To be implemented in the single inclusives (extend to lower  $p_T$  at the LHC)
- For tagged jets radiative gluons to unexpectedly high  $p_T$  ("FFs")
- The angular distribution?



## **Angular Distribution**



Naive picture



$$i(-i) = 1 \qquad i \ (i) = -1 = \cos(\pi)$$
$$\frac{dN^{g}_{med}}{d\omega d\sin\theta * d\delta} \propto \left( \left| M_{a} \right|^{2} + 2 \operatorname{Re} M_{b}^{*} M_{c} \right) + \dots$$



Solution to first order in the mean # of scatterings

$$\frac{dN^{g}_{med}}{d\omega d\sin\theta^{*}d\delta} \approx \frac{2C_{R}\alpha_{s}}{\pi^{2}} \int_{z_{0}}^{L} \frac{d\Delta z}{\lambda_{g}(z)} \int_{0}^{\infty} dq_{\perp} q_{\perp}^{2} \frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^{2}q_{\perp}}$$

$$\times \int_{0}^{2\pi} d\alpha \frac{\cos\alpha}{(\omega^{2}\sin^{2}\theta^{*} - 2q_{\perp}\omega\sin\theta^{*}\cos\alpha + q_{\perp}^{2})}$$

$$\times \left[1 - \cos\frac{(\omega^{2}\sin^{2}\theta^{*} - 2q_{\perp}\omega\sin\theta^{*}\cos\alpha + q_{\perp}^{2})\Delta z}{2\omega}\right]$$

$$IV_{\perp}$$
 Phys. Lett. B in press. hep-ph/0501255

October 23, 2005

Ivan Vitev, LANL

In reality



# **Angular Distribution (Jet Cone)**





October 23, 2005

Ivan Vitev, LANL

E=100 GeV

0.4 0.6 0.8

E.=50 GeV





Cutting out part of the available phase space



Note that the characteristic features of E-loss are related to the interference phases (QM versus PS)









M.Djordjevic, M.Gyulassy, Nucl.Phys.A (2004)

October 23, 2005



M.Djordjevic, M.Gyulassy, R.Vogt, nucl-th/0507019 See also Armesto, et al.

The  $R_{AA}$  for charm can be reach values of 1/4 but bottom is limited to 1/2 One should be careful about the physical meaning of the parameters!

 $dN^{g}/dy = 3500$   $\hat{q} = 15 \ GeV^{2}/fm$ 

Where does one get such parameters from?

Are these leptons from heavy mesons? (Coctail methods...) FVTX What are the different attenuation mechanisms for heavy mesons?



# Forward Y (Di)Jet Quenching













T.Hirano, Y.Nara, Phys.Rev.C68 (2003)

October 23, 2005





Ivan Vitev, LANL

#### A number of nuclear effects: Cronin, power corrections, energy loss









- Reduces the centrality dependence of the Cronin effect around Y=0
- Generates rapidity asymmetry (from backward enhancement to forward supression)
- Consistent with suppression at smaller C.M. energies (NA35 at 17 GeV)
- Indicative of Y and  $p_T$  dependence of the cold nuclear matter quenching to be studied in detail for LHC applications

T.Goldman, M.Johnson, J.Qiu, I.V. in preparation (similar results for heavy quarks)

October 23, 2005





- **Energy loss formulations** to all orders on the mean number of scatterings exist. Should be formulated in terms of transparent physical quantities. Correctly incorporated in the pQCD calculations.
- Inclusive particle quenching is the first handle on the densities achieved in heavy ion collisions. At RHIC extracted e = 15 GeV/fm<sup>3</sup> At the LHC anticipated e > 200 GeV/fm<sup>3</sup>
- Redistribution of the energy. For tagged to p<sub>T</sub>=4 GeV at RHIC and much higher at the LHC. In terms of angular re-distribution of the energy - large and measurable according to the calculated distributions.
  - "Heavy quarks" don't seem to be consistent with normal densities. Are these heavy quarks? Is this the correct e-loss mechanism?
- Forward rapidity particle production is indicative of power corrections and energy loss. Cold nuclear matter energy loss should be studied great detail for applications at the LHC.