

#### Signal height in Silicon Pixel Detectors irradiated with Pions and Protons

J. Acosta \*<sup>2</sup>, A. Bean <sup>3</sup>, W. Erdmann <sup>1</sup>, U. Langenegger <sup>4</sup>, C. Martin <sup>3</sup>, B. Meier <sup>1</sup>, V. Radicci <sup>3</sup>, T. Rohe <sup>1</sup>, J. Sibille <sup>3</sup>, P. Trueb <sup>1,4</sup>

\*speaker, 2 Paul Scherrer Institut Villigen; 2 Univ. of Puerto Rico-Mayaguez, 3 Univ. of Kansas, 4 ETH Zurich

Geneva

November 11 2008

Signal height in Silicon Pixel Detectors irradiated with Pions and Protons



- Study the change of the sensor behavior due to irradiation.
  - The following parameters were measured:
    - Signal height
    - Depletion voltage
    - Noise
    - Leak current

# **The Samples**



- Single chip sensors from CMS Barrel Pixel Detector
  - production wafers
    - N-on-n
    - DOFZ (ρ~3.7 K Ω cm )
    - P-spray isolation
  - 4 non-irradiated sensors (for contrast)
  - 7 groups of irradiated sensors exposed to fluences up to 5.1 × 10<sup>15</sup> Neq/cm<sup>2</sup>

## Irradiation

- Pions (300 MeV, PSI, Aug 2007)
  - 14 samples up to  $6.2 \times 10^{14}$  Neq/cm<sup>2</sup>
  - Irradiation was not smooth, lost several days of good beam
  - Thanks
    - Maurice Glaser (CERN)
    - Mark Gerling and Christopher Betancourt (UCSC)
    - Financial support from RD50
- •Protons (26 GeV, CERNPS, July 2007)
  - 32 samples up to  $5.1 \times 10^{15} \text{ Neq/cm}^2$
  - Went smoothly
    - thanks to Maurice Glaser and the CERN team
  - Transport of samples out of CERN difficult

# **Setup Description**

The Cooling box was Flushed with dry N2.

Humidity and temperature sensors -H<5%

Sr90 source (~2 MBq)



Colling with
 Peltier system
 -T~-10° C



• Efficiency ~80%

## **Calibration procedure**

- For each sensor we reduced the temperature
  - Temperature during the test ~ -10° C
- Dry with N<sub>2</sub>

#### Humidity during the test < 5%</li>

| Test ROC      |  |
|---------------|--|
| File \        |  |
| 8085-19-7     |  |
| new dir       |  |
| Pre test      |  |
| Full test     |  |
| Trim test     |  |
| PHCalibration |  |
| Scurve Test   |  |

- Calibrate the sensor at Bvias = -150V
  - Pretest (find the correct Dac Parameters).
  - Fulltest (Test address decoding pixel by pixel).
  - Trim Test (small pixel by pixel threshold corrections)
  - Pulse Height Calibration (Calibration between signal in (Vcal) and signal out "Pulse Height" per pixel).
  - S-Curve Test (to scan noise pixel by pixel).

### **Test Procedure**



- For each sensor we varied the
  Vbias from -25V to -600V
- For each Vbias Value:
  - "S-curve test" to calculate noise variations.
  - Take data with Sr-90 source

#### Noise measurement ("S-curve Test")



- For each pixel fix the threshold Voltage, and send n signals with different amplitude.
- Increase the value of the amplitude of signal (calibration voltage).
- Measure the efficiency (top graph)
- Fit with error function to determine sigma.

$$\sigma = \frac{1}{P_2 \cdot \sqrt{2}}$$

Build the distribution for each sensor and calculate the mean.

# Leakage Current



 Simply measure the current for each Vbias across the sensor

# **Pulse Height Spectra**



- Landau-like shape only for clusters < 3 pixels</li>
  - Large cluster come from:
    - low energetic electrons
    - deltas
- Pulse height depends on cluster size
  - Restrict to 1(+2) hit clusters
  - Fit Landau convoluted with a Gaussian.
  - Peak of low signals in 1-hit clusters

# **Depletion Voltage estimation**



- For each Vbias we Fit charge distribution from Sr-90 souse using Landau convoluted function, and take the MPV (most probable value).
- Build the graph MPV vs Vbias
  - Extrapolate a line from points where sensor is Depleted
  - Another from the points where the Charge Collection is increasing
  - Intersection is what we call the Depletion Voltage

## **Depletion voltage**



The Values are spread in irradiated sensors and there are large uncertainties in the method

# **Charge collection vs Vbias**



### **Signal vs Fluence**



Large spread between samples

- Problems with calibration?
- Excluded
  - Wafer thickness variations
  - Small temperature variations

# What is above 10<sup>15</sup>?



- For samples with  $\Phi >> 10^{15}$ 
  - ROC operation becomes difficult
  - Dacs have to be adjusted which are not part of the standard calibration procedure
  - Has to be done manually by expert (not me)
  - (Not yet succeeded)
    - For a sample with 2.8 ×10<sup>15</sup> Neq/cm<sup>2</sup> particles are clearly

#### seen, but no quantitative measurements yet.

### Conclusions

- Charge Collection studies could reproduce the values from previous measurements.
- Measurements for fluences > 10<sup>15</sup> Neq/cm<sup>2</sup>
- See particles
  - No quantitative measurement yet
- Short term
  - Understand the operation of highly irradiated ROCs
  - Understand the reason for the wide spread
  - Analysis of 2hit clusters
- Longer term
  - Scintillator trigger
  - Efficiency measurement
  - Cut of low energetic electrons
  - Better cooling