

Charge Collection, Power, and Annealing Behaviour of Planar Silicon Detectors after Reactor Neutron, Pion and Proton Doses up to 1.6×10<sup>16</sup> n<sub>eq</sub> cm<sup>-2</sup>

> A. Affolder, P. Allport, G. Casse University of Liverpool

#### Miniature Silicon Micro-strip Sensors

Microstrips, ~1x1 cm<sup>2</sup>, 100-128 strips, 75-80 µm pitch

Micron/RD50 (4" & 6" wafers) – 300  $\mu$ m thick

•n-in-p FZ ( $V_{FD} \sim 15V/\sim 70 V$ )•n-in-p MCz ( $V_{FD} \sim 550 V$ )•n-in-n FZ ( $V_{FD} \sim 10 V$ )•n-in-n MCz ( $V_{FD} \sim 170 V$ )

•p-in-n FZ ( $V_{FD} \sim 10V$ ) •p-in-n MCz ( $V_{FD} \sim 170 V$ )

Micron/VELO test structures – 300  $\mu m$  thick •n-in-n FZ (V\_{FD} ~70V)

HPK/ATLAS06 and ATLAS07 – 300  $\mu$ m thick •n-in-p FZ (V<sub>FD</sub> ~160V)

Micron/RD50 (4" & 6" wafers) – 140 μm thick •n-in-p FZ (V<sub>FD</sub> ~2-10 V) Micron/VELO test structures – 200 μm thick •n-in-n FZ (V<sub>FD</sub> ~90V) CNM/RD50 EPI – 150 μm thick active + carry-wafer •n-in-p

•p-in-n







#### **Irradiation Sources**



Irradiation and dosimetry (Neutrons): Triga Reactor, Jozef Stefan Institute, Ljubljana, Slovenia: <u>V. Cindro, et. al.</u>



Irradiation and dosimetry (24 GeV Protons): CERN PS Irrad1 facility, Geneva Switzerland: <u>M. Glaser, et. al</u>.



Irradiation and dosimetry (26 MeV Protons): Compact Cyclotron, Karlsruhe, Germany: <u>W. de Boer, A. Dierlamm, et. al.</u>



Irradiation and dosimetry (70 MeV Protons): AVF Cyclotron at CYRIC, Sendai, Japan: <u>Y. Unno, T. Shinozuka, et. al.</u>



#### **Pion Irradiations**

 Radiation backgrounds at LHC/SLHC dominated by charged pions close to interaction point.



#### **PSI** Pion Beam

- 5cm along beam line
- Beam Energy : 191 MeV
- Beam Spot: 16mm × 13mm

#### Flux

- 1.5×10<sup>14</sup> pions cm<sup>-2</sup> day<sup>-1</sup>
- 7 days to reach 10<sup>15</sup> pions cm<sup>-2</sup>

Irradiation and dosimetry (Pions): Paul Scherrer Institut, Switzerland: <u>M. Glaser, T. Rohe, et. al.</u>



#### **Experimental Setup**

- Charge collection efficiency (CCE) measured using an analogue electronics chip (SCT128) clocked at LHC speed (40MHz clock, 25ns shaping time).
  - Measurements performed in chest freezer at a temperature of ~-25 °C with N<sub>2</sub> flush
- <sup>90</sup>Sr fast electron source triggered with scintillators in coincidence used to generate signal.
- The system is calibrated to the most probable value of the MIP energy loss in a non-irradiated 300µm thick detector (~23000 e<sup>-</sup>).





#### **Neutron Summary**



Both p-in-n FZ and p-in-n MCz sensors show insufficient charge collection for short strip regions (>5×10<sup>14</sup> n<sub>eq</sub> cm<sup>-2</sup>)
n-in-n FZ, n-in-p FZ, and n-in-p MCz have similar CCE at these doses
n-in-n FZ slightly better at doses < 5×10<sup>14</sup> n<sub>eq</sub> cm<sup>-2</sup>
n-in-n MCz shows the best performance as expected from CV measurements



### **Neutron Comparison**

- After ~5×10<sup>14</sup> n cm<sup>-2</sup>, n-in-n FZ, n-in-p FZ, n-in-p MCz very similar
- At higher voltage n-in-n MCz superior up to maximum fluence (10<sup>15</sup> n cm<sup>-2</sup>)
  - Need higher fluence data to determine if this continues
- p-in-n shows inferior performance as expected



Appears once trapping dominates, all n-strip readout choices studied are the same after neutron irradiation



# **Charged Sources**

- 24 GeV Protons
  - CERN PS
  - The "standard" so far
  - Long Irradiations
    - Flux: 1-2×10<sup>13</sup> cm<sup>-2</sup> h<sup>-1</sup>
  - Limited periods during the year
  - Annealing during irradiation
    - Environment ~30 C°
    - Either include effects or cold irradiation
- 200 MeV Pions
  - PSI
  - Limited fluences

- 26 MeV Protons
  - Karlsruhe Compact Cyclotron
  - Easier access
  - Runs fairly often
  - High rates/short irradiations
    - Flux: 1-3×10<sup>15</sup> cm<sup>-2</sup> h<sup>-1</sup>
      - No/little annealing during irradiation
  - Have to confirm hardness factor on IV/CCE
- 70 MeV Protons
  - CYRIC AVF Cyclotron
  - Similar advantages/issues as Karlsruhe
  - High rates/short irradiations
    - Flux: 1-6×10<sup>14</sup> cm<sup>-2</sup> h<sup>-1</sup>



#### 24 GeV Proton Irradiations



The current standard for proton irradiation studies. Additional n-in-p FZ  $6.2 \times 10^{15} n_{eq} \text{ cm}^{-2}$  and  $1.0 \times 10^{16} n_{eq} \text{ cm}^{-2}$  pieces in hand.



#### **Proton Hardness Comparison**



- After hardness correction, IV and CCE agree for all three proton sources studied with n-in-p FZ devices
  - Roughly ±10% error in fluence, ±0.5 C° error in temperature during measurement (Total ±15% error in current)
- Validates 70 MeV Protons from CYRIC for ATLAS sensor studies
  - 24 GeV Protons from CERN PS will also be used when available



### n-in-p FZ Proton Comparisons





13th RD50 Workshop, 10th-12th November 2008, CERN

# n-in-p FZ Irradiation Comparisons





#### **Expected Sensor Power**

- Sensor power/cm<sup>2</sup>
   @ -25 C° with <u>no</u>
   <u>annealing</u>
  - Averaged across diode geometries and substrate types
    - No significant difference seen above 5×10<sup>14</sup> n cm<sup>-2</sup>
- At radius of ~4 cm from beam, sensors would generate ~260 mW/cm<sup>2</sup>
  - <u>Significant</u>
     <u>challenge for</u>
     <u>cooling!!</u>



Average power vs. fluence, corrected to 1×1 cm<sup>2</sup> area at -25C° ±10% error in fluence, ±0.5 C° error in temperature (Total ±15% error in power)



#### 26 MeV Proton Irradiations

- n-in-n FZ and n-in-p FZ look the same for proton doses studied so far
  - Study limited by part availability
    - More parts sent to Karlsruhe
  - More wafers under process at Micron



Charge seen with n-in-p FZ after 1.6×10<sup>16</sup> n<sub>eq</sub> cm<sup>-2</sup> (expected maximum dose of innermost devices at SLHC)



### **Pion Irradiations**



- n-in-p MCz superior to n-in-p FZ after pion irradiation, as expected from diode CV measurements
  - Acts like n-in-n MCz after neutron irradiation
- Plan on confirmed charge particle behaviour of n-in-p MCz with 26 MeV protons from Karlsruhe
  - Under irradiation currently



#### Mixed Irradiations (MCz)



- β > 0 (dominant donor creation) for protons (more point defects than clusters)
- β < 0 (dominant acceptor creation) for neutrons (more clusters than point defects)</li>

#### Mixed Irradiations (Neutrons+Protons)

- Both FZ and MCz show "predicted" behaviour with mixed irradiation
  - FZ doses add
    - |N<sub>eff</sub>| increases
  - MCz doses compensate
    - |N<sub>eff</sub>| decreases



# Needs further study with both nMCz and pMCz substrates and differing mixed doses



#### **Thin Sensors**



### 150 µm EPI - Neutrons

Produced by CNM Barcelona



Significant charge (6.7 ke<sup>-</sup>) measured after 8×10<sup>15</sup> n cm<sup>-2</sup>



### EPI vs thin n-in-p FZ



#### Good CCE results with Epi!

Drawbacks: difficult to process, expensive, limited sources of thick Epi (150 $\mu$ m), possible variability of performances!



#### **Thin Summary-Neutrons**



n-in-p EPI (150 um) slightly superior at higher neutron fluences



### Thin Sensors (CCE)-Neutrons

After  $2x10^{14}$  n cm<sup>-2</sup>, same CCE at low voltages and than saturation for the thin sensor (~250V).

After  $5x10^{14}$  n cm<sup>-2</sup>, same CCE at low voltages and than saturation for the thin sensor (~400V).

After  $1.6 \times 10^{15}$  n cm<sup>-2</sup>, saturation for the thin sensor (~600V).

After  $3x10^{15}$  n cm<sup>-2</sup> the CCE of the 300 $\mu$ m thick devices becomes higher above 900V.

After  $7x10^{15}$  n cm<sup>-2</sup> the CCE of thin and thick sensors is the same up to 1100V.



Above  $7x10^{15}$  n cm<sup>-2</sup>, ~10% higher CCE for the 140µm thick sensors, but within uncertainties



#### **Thick/Thin Reverse Currents**





13th RD50 Workshop, 10th-12th November 2008, CERN

### Annealing



### n-in-p FZ Neutrons (1E15)

#### "Fine step" Annealing of the collected charge, HPK FZ n-in-p, 1E15 n cm<sup>-2</sup>





### n-in-p FZ Neutrons (1E15)

#### "Fine step" Annealing of the collected charge, HPK FZ n-in-p, 1E15 n cm<sup>-2</sup>





# n-in-p FZ 26 MeV Protons (1E15)

#### "Fine step" Annealing of the collected charge, Micron FZ n-in-p, 1E15 n cm<sup>-2</sup> (26MeV p irradiation)





# n-in-p FZ 26 MeV Protons (1E15)

"Fine step" Annealing of the collected charge, Micron FZ n-in-p, 1E15 n cm<sup>-2</sup> (26MeV p irradiation)





#### n-in-n FZ Neutrons (1.5e15)

#### "Fine step" Annealing of the collected charge, Micron FZ n-in-n, 1.5E15 n cm<sup>-2</sup>





#### n-in-n FZ Neutrons (1.5e15)

#### "Fine step" Annealing of the collected charge, Micron FZ n-in-n, 1.5E15 n cm<sup>-2</sup>





#### Conclusions

- Planar, n-strip detector detectors have shown sufficient collected charge for innermost layers at SLHC assuming that:
  - Low threshold (2ke<sup>-</sup>), low noise (500 enc) electronics achievable
  - Cooling can handle ~260 mW/cm<sup>2</sup> sensor power with -25 C° at sensor
- n-in-n MCz shows promise after neutral irradiation
- n-in-p MCz shows promise after charged irradiation
  - Need mixed, high dose irradiations
- n-in-p EPI shows some benefit relative to thin FZ after neutron irradiation
  - Power might be an issue
- Fine annealing performed after neutron/proton irradiations for n-in-p/n-in-n FZ
  - +30% CCE and -40% Power after 100 days annealing at 20 C







#### **Neutron Irradiations**

- p-in-n
  - MCz slightly better than FZ
  - Insufficient CCE for tracking >5-10×10<sup>14</sup> n cm<sup>-</sup>
- n-in<sup>2</sup>-n
  - MCz much better than FZ
  - Higher dose MCz data needed
- n-in-p
  - FZ/MCz similar response
  - <u>Charge seen after</u>
     <u>1.5×10<sup>16</sup> n cm<sup>-2</sup></u>



p-in-n sensors: FZ-black, MCz-red

#### Annealing Reverse Current

#### "Fine step" Annealing of the reverse current, HPK FZ n-in-p, 1E15 n cm<sup>-2</sup>





#### Material comparison: EPI n vs p, reactor neutrons



