Charge collection and trapping effects in 75 µm, 100 µm and 150 µm thick n-type epitaxial silicon diodes after proton irradiation

Julian Becker, Eckhart Fretwurst, Jörn Lange, Gunnar Lindström

Hamburg University

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

13th RD50 Workshop, CERN, November 2008

Overview on investigated diodes

- Epitaxial n-Si pad-detectors on Cz-substrate produced by ITME/CiS
- Thickness: 75 $\mu m,$ 100 μm and 150 $\mu m,$ Size: 5 x 5 mm^2 and 2.5 x 2.5 mm^2
- Standard (ST) and oxygen enriched (DO, diffusion for 24h at 1100°C) material
- 24 GeV/c-proton-irradiation (CERN PS), $\Phi_{eq} = 1 \times 10^{14} 1 \times 10^{16} \text{ cm}^{-2}$

Material	d	Wafer	Orientation	N _{eff,0} [P]	[0]
	[µm]			[10 ¹² cm ⁻³]	[10 ¹⁶ cm ⁻³]
EPI-ST 75	74	8364-03	<111>	26	9.3
EPI-DO 75	72	8364-07	<111>	26	60.0
EPI-ST 100	102	261636-05	<100>	15	5.4
EPI-DO 100	99	261636-01	<100>	15	28.0
EPI-ST 150	147	261636-13	<100>	8.8	4.5
EPI-DO 150	152	261636-09	<100>	8	14.0

TCT electron current signal examples

as measured :

Ш.

Trapping time constant

- Charge Correction Method after deconvolution and cutoff
- Resulting τ_{eff} sensitive on cutoff level, integration window, fitting range

 → quite large uncertainty (15 40%)
- Result: Trapping probability $1/\tau_{eff}$ fluence-proportional
- Damage parameter β_e in the same range as value for FZ*
- 25% difference between
 ST and DO, but due to large errors not significant

11.11.2008, 13th RD50 Workshop CERN

UН

TCT with 5.8 MeV α -particles

- ²⁴⁴Cm α -source: 5.8 MeV, 26 μ m penetration depth (SRIM)
- CCE obtained by normalising integrated charge to the one of unirradiated diode
- Measurements usually at RT, but for highly irradiated diodes at -10°C because of high currents
- Good reproducibility, no difference for CCE between RT and -10°C \rightarrow mobility rise and τ_{eff} decrease at low T obviously compensate

CCE(U) almost saturating for low fluences

0.1

100

200

300

400

- CCE(U) rises strongly for high fluences (exceeds even 1 at high U for thin diodes) → avalanche effects?
- CCE degrades with fluence

Φ... = 7×10¹⁵cm⁻²

600 700

U [V]

 $\Box \Phi_{eq} = 1 \times 10^{16} \text{ cm}^{-2}$

500

0.1

00

100

200

300

400

 $\Phi_{eq} = 7 \times 10^{15} \text{cm}^{-2}$

600

700

U [V]

00

200

300

100

Φ_{eq} = 1×10¹⁶cm⁻²

500

Φ_{en} = 7×10¹⁵ cm⁻²

Φ_{eq} = 1×10¹⁶ cm⁻²

600

700

U [V]

500

CCE as a function of fluence (at 350V)

- CCE degrades with fluence, but deceleration at high fluences due to avalance effects?
- CCE improves for decreasing thickness as $t_{\rm C}$ decreases (smaller distance, higher field)
- No significant difference between ST and DO

ШΗ

Ш

Simulation of CCE

- τ_{eff} found to be linear with fluence, same values as in FZ
 → everything as expected and understood?
 → check with simulation!
- Simulation of CCE with $\alpha\text{-particles}$ taking τ_{eff} obtained by CCM
- Input:
 - v_{dr} parameterisation including saturation
 - linear electric-field approximation (reasonable for U>>U_{dep})
 - e-h pair distribution after penetration of $\alpha\mbox{-particles}$ as calculated by SRIM
 - β_e = 5.1x10⁻¹⁶ cm²ns⁻¹, β_h = 6.5x10⁻¹⁶ cm²ns⁻¹ used for calculating τ_{eff} (G. Kramberger)

CCE measured vs. simulated CCE(U): CCE(Φ_{eq}) at 350V:

- No good agreement: simulation systematically underestimate measurements
- Avalanche effects? But should not be the case for lowest fluences
- Plasma effect? But same problem seen before for laser- and β-TCT (see e.g. G.Kramberger, 8th RD50 Workshop Prague; L.Beattie NIM A 421 (1999), 502)
- Model assumptions (e.g. v_{dr}(E), E(x)) wrong?
 But even calculated maximum CCE in case of assuming v_{dr}= v_{sat} everywhere is too low!
- \rightarrow Discrepancy must be related to trapping model

Possible solutions (speculative!)

- Fast detrapping?
- Exponential decay exp(-t/ τ_{eff}) with constant τ_{eff} does not provide accurate description of trapping?
 - assumption $v_{dr} < < v_{th}$ not valid if $v_{dr} \approx v_{sat}$?
 - cross section dependent on v_{dr}?
 - inhomogeneous trap density?
 - trap filling at high currents?
- First try: voltage-dependent τ_{eff}* → fits CCE(U) well!
 → modified CCM can also produce flat slope of Q(U)!
 *cf. L.Beattie NIM A 421 (1999), 502

Summary

- New Laser-TCT setup with improved rise time
 - \rightarrow Time-resolved signal even for 150 µm EPI diodes
 - \rightarrow No type inversion in p-irradiated n-type EPI diodes
 - \rightarrow Double Junction at high fluences
 - \rightarrow CCM possible: $1/\tau_{eff}$ linear with fluence with β_e similar to FZ
- CCE with α -particles:
 - CCE increases for decreasing thickness
 - No difference between ST and DO
 - Degradation with fluence decelerated due to avalanche effects
- Simulated CCE underestimates measurements
 - Modified trapping description needed?
 - E.g. voltage-dependent τ_{eff} fits data well

			A F F F F F F F F F F		
(- <u>-</u>	ΛΓΖΙΟ	SITDE	C = = = = = [.] 201		
	AGNUP				
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Depletion Voltage (from CV at 10 kHz)

CV/IV measurable up to $4x10^{15}$ cm⁻² Close-up at room temperature 450 - 150 Annealing curve at 80°C (isothermal) 400 \rightarrow no type inversion 00 Stable Damage (8 min at 80°C): first 350 donor removal, then donor introduction with $g_c(DO) > g_c(ST)$ 5.0x10¹⁴ 1.0x10¹⁵ 0.0 300 ∑²⁵⁰ ∩[∰]200 Annealing curve: ■- 150ST, 1x10¹⁴cm⁻² 180 150ST, 1x10¹⁵cm⁻² EPI-ST 150µm (big) 160 EPI-DO 150µm (big) Ta=80°C EPI-ST 100µm (big) 150 EPI-DO 100µm (big) 140 EPI-ST 75µm (big) EPI-DO 75µm (big) 120 EPI-ST 150µm (small) 100 U_{dep} [V] EPI-DO 150µm (small) 100 EPI-ST 100µm (small) EPI-DO 100µm (small) 50 EPI-ST 75µm (small) 80 EPI-DO 75µm (small) EPI-ST 150µm (big 2) ∇ 8min at 80°C 60 EPI-DO 150µm (big 2) 0 40 1x10¹⁵ 2x10¹⁵ 3×10^{15} 4x10¹⁵ 0 Φ_{eq} [cm⁻² 10 100 t_{anneal} [min]

Stable Damage:

Laser -TCT Setup

Detector Mounting

Integrated induced charge for e-h pair deposited at x_0 (e + h contribution):

$$Q_{x_0} = \frac{Q_{0,x_0}}{d} \left[\int_{x_0}^d \exp\left(-\frac{t(x)}{\tau_{eff,e}}\right) dx - \int_{x_0}^0 \exp\left(-\frac{t(x)}{\tau_{eff,h}}\right) dx \right] \quad \text{with} \quad t(x) = \int_{x_0}^x \frac{1}{v_{dr} \left(E\left(x'\right)\right)} dx'$$

Drift velocity parameterisation (C.Jacobini, Sol.State El., Vol. 20, 1977):

Linear electric-field approximation:

$$E(x) = \frac{1}{d} \left[U_{dep} \left(\frac{2x}{d} - 1 \right) - U \right], \qquad U \geq U_{dep}$$

Integration over all positions where e-h pairs were created:

$$Q_{total} = \int_0^d Q_{x_0} dx_0$$

Creation of e-h Pairs as a Function of Detector Depth

UН 茁

Results from U-dependent τ_{eff} fit of CCE(U)

$$\tau_{eff,e} = \tau_0(U_{dep}) + \tau_1 \frac{(U - U_{dep})}{100V}$$

$\tau_0(U_{dep})$	=	22.5 ns,	τ_1	=	2.0ns	for $1 \times 10^{14} cm^{-2}$
$\tau_0(U_{dep})$	=	8.9ns,	τ_1	=	4.0ns	for $3 \times 10^{14} cm^{-2}$
$\tau_0(U_{dep})$	=	2.4ns,	τ_1	=	1.0ns	for $1 \times 10^{15} cm^{-2}$

