Recent results on bistable cluster related defects

E. Fretwurst¹ <u>A. Junkes¹</u> L. Makarenko³ I. Pintilie^{1,2}

¹Institute for Experimental Physics - Detectorlab University of Hamburg, Germany

²NIMP Bucharest-Magurele, Romania

³Belarusian State University, Minsk, Belarus

13th RD50 Workshop, CERN 10-12 November 2008

Universität Hamburg

Why investigate cluster related defects?

Cluster related defects are responsible for high leakage current after hadron irradiation

Their structure is still unknown

switching 'on' and 'off' of I_{dep} and E4a + E4b

Motivation o	Materials ●	Bistability	Signal quality	summary & outlook o
Materials				

Material	EPI-DO	MCz	FZ	EPI-ST
N _{Ox.} [10 ¹⁶ cm ⁻³]	66	22	1.8	9.3
Thickness [μ m]	74	100	100	74
Irradiation	proton	neutron	proton	proton
Fluence [cm ⁻²]	1.6×10 ¹³	3×10 ¹¹	1×10 ¹²	1.6×10 ¹³
Method	TSC	DLTS	DLTS in progress	TSC in progress

Motivation o	Materials o	Bistability ●○○	Signal quality	summary & outlook
Bistability c	of E4a and	E4b		

Bistability used to track cluster defects at high T

- observation so far: E4a/E4b anneal out in 120 min at 80 °C
- novelty: bistability reproducible up to more than 300°C

Annealing procedure

- isochronal annealing step
- injection of 1A
- isothermal annealing (80 ℃)

measurements: CV/IV, DLTS/TSC, charge capture

oxygen enriched Epi - proton irradiated (TSC)

Simultaneous annealing out of E4a/E4b and the divacancy

 \rightarrow supports the assumption that E4a/E4b are vacancy like

Epi-St - proton irradiated (TSC)

Annealing in progress, similar results expected

Low oxygen content \rightarrow annealing of E4a/E4b and V_2 delayed

Motivation	Materials	Bistability	Signal quality	summary & outlook
o	o		●000	o
Basics				

- capture and emission probability of defects described by SRH-statistics
- depending on $\sigma_{n,p}$ and E_a
- TSC measurement of current during charge carrier emission
- DLTS measurement of capacitance transients
- ⇒ charge capture characteristics very important! ⇒ $\sigma_{n,p}$ by DLTS capture measurements at fixed temperature

capture measurements

- cluster influence filling time and signal height of $V_2^{=/-}$
- measurement of σ_n influenced by cluster related defects

- measured concentrations influenced by clusters
- $V_2^{-/0}$ reduced, as well!

(EPI-DO)

- annealing curve of VO not understood
- introduction rates?

Motivation	Materials	Bistability	Signal quality	summary & outlook
o	o	000	○○○●	
14/1	1 1 A A	1.1.1.1		

What may lead to the reduction

Speculations

- cluster related defects are multiple vacancies
- location of point defects inside and outside the disordered regions has important impact → comparison of neutron and proton irradiation

Motivation	Materials	Bistability	Signal quality	summary & outlook
o	o	000	000●	o
14/1 -				

What may lead to the reduction

Speculations

- cluster related defects are multiple vacancies
- location of point defects inside and outside the disordered regions has important impact → comparison of neutron and proton irradiation

More speculations

- potential walls to overcome by charge carriers due to electrical shielding
- explanation by lattice strain distortion problematic
- no formation of 'new' defects, change of visibility

Motivation o	Materials o	Bistability	Signal quality	summary & outlook ●
Summa	rv & outlool	k		

summary

- Annealing of V₂ and E4a/E4b similar
- Supports the assumption that *E4a/E4b* are vacancy related
- Cluster defects influence the measured *σ_n* and signal of point defects

outlook

- Finish measurements, confirm observation on samples with high oxygen content
- More detailed evaluation of capture measurements