Radiation induced point- and cluster-related defects with strong impact to damage properties of silicon detectors

I. Pintilie^a, E. Fretwurst^b, A. Junkes^b, G. Lindström^b

^a National Institute of Materials Physics, Bucharest, Romania

^b Institute for Experimental Physics, University of Hamburg, Hamburg, Germany

Motivation

Goals

- Electrically active centers in SCR
- Techniques
- Material & Irradiations
- Results
 - Point defects
 - Extended defects
- Summary & Conclusions

Motivation

"Defect engineering" needed for SLHC application in the tracking area to improve the detectors radiation tolerance

Radiation damage – radiation induced defects

- None of the detected defects could explain the macroscopic behaviour of the irradiated diodes
- The defect models attributed the oxygen effect to the formation of a deep acceptor (V₂O complex), suppressed in oxygen rich silicon

Goals

 Search for still undetected defects responsible for the radiation damage, as seen at operating temperatures

□ Point defects, predominant after gamma and electron irradiation

- Extended defects (clusters), responsible for hadron damage
- Understand their formation and find ways to optimize the device performance

Electrical properties of Point Defects in the Space Charge Region (SCR)

Defect' signature – emission rates

$$e_{n,p}(T) \sim \sigma_{n,p}(T) * \exp\left(\pm \frac{E_T(T) - E_{C,V}}{k_b T}\right)$$

1) Contribution to N_{eff} - given by the steady
state ocupancy of the defect levels in SCR
 $n_T^{acceptor}(T) = N_T \frac{e_p(T)}{e_n(T) + e_p(T)}; n_T^{domor}(T) = N_T \frac{e_n(T)}{e_n(T) + e_p(T)}$
 $N_{eff} = \sum n_T^{domor} - \sum n_T^{acceptor}$
2) Contribution to the leakage current

 $I_{dep}(T) = q_0 * A * d * (\sum e_n(T) * n_T^{acceptor}(T) + \sum e_p(T) * n_T^{donor}(T))$

E′

E_C

Charge state of electrically active defects at room temperature

Donors (+/0)

- traps for electrons
- show Poole-Frenkel effect
- Contribute with (+) to N_{eff} at RT
- traps for holes
- show no Poole-Frenkel effect
- do not contribute to N_{eff} at RT unless are near the midgap

Charge state of electrically active defects at room temperature

Acceptors (0/-)

E_c

- traps for electrons
- show no Poole-Frenkel effect
- do not contribute to N_{eff} at RT unless are near the midgap
- traps for holes
- show Poole-Frenkel effect
- contribute with (-) to $\mathrm{N}_{\mathrm{eff}}$ at RT

Techniques

I) Deep Level Transient Spectroscopy - for N_T < 10% N_d

- based on measuring capacitance transients: $\Delta C = \Delta C_0 \exp(-e_{n,p}t)$
 - ► emission rates $e_{n,p}(T)$ position in the bandgap ΔE_T
 - capture cross sections σ_n , σ_p
 - ► defect concentration: $N_T \sim 2 \cdot N_d \cdot \Delta C / C_0$

II) Thermally Stimulated Currents Method – improved for $N_T > N_d$ and for centers with enhanced field emission

- based on measuring the current due to emission from the filled traps
 - emission rates $e_{n,p}(T)$
- position in the bandgap ΔE_T
- apparent capture cross sections σ_n , σ_p
- ► defect concentration: N_T

Material & Irradiations

Material

- Float zone- Silicon wafers: <111>, 300 μ m, 3-4 k Ω cm, N_d~10¹² cm⁻³
 - standard Oxidation (STFZ) N_d~8x10¹¹ cm⁻³
 - difussion oxygenated (72 h at 1150 C) (DOFZ) N_d~1.2x10¹² cm⁻³
- MCz-Silicon wafers: <100>, 300 μ m, 870 Ω cm, N_d = 4.94x10¹² cm⁻³
- EPI-Silicon wafers: <111>
 - 25 and 50 μ m on 300 μ m Cz-substrate, 50 Ω cm, N_d~7.2x10¹³ cm⁻³
 - \sim 75 µm on 300 µm Cz-substrate, 169 Ω cm
 - standard Oxidation (EPI-ST), $N_d = 2.66 \times 10^{13} \text{ cm}^{-3}$
 - diffusion oxygenated for 24 h/1100°C (EPI-DO) $N_d = 2.48 \times 10^{13} \text{ cm}^{-3}$

Irradiations

- **Co⁶⁰** γ -source at BNL, dose range 1 to 500 Mrad
- 6 -15 MeV electrons: irradiation facility at KTH Stockhom, Sweden
- **23 GeV protons**: irradiation facility at CERN
- **1 MeV neutrons**: TRIGA reactor in Ljubljana/Slovenia

Results – Point Defects (Ref. 1-6)

<u>Co⁶⁰- γ irradiation</u> – only point defects are generated

- Very pronounced beneficial effect of oxygen on both I and V_{dep}
- Close to midgap acceptor correlated with [O] responsible ?

- Low irradiation γ doses (but already high for DLTS)

I_p center

- deep acceptor (-/0)
- Ea = Ec 0.545 eV
- $\sigma_n = (1.7 \pm 0.2) \times 10^{-15} \text{ cm}^2$
 - direct measurement
- $\sigma_p = (9\pm 1)x10^{-14} \text{ cm}^2$ - from $N_T^{DLTS}(T)$
 - ~ 90% occupied with (-) at RT

- Higher irradiation γ doses (TSC)

<u>I_p centers</u>

- Two levels in the gap: - a donor E_v +0.23eV (+/0) & an acceptor E_c -0.545 eV (0/-)

- Supressed in Oxygen rich material and Quadratic dose dependence
- \Rightarrow generated via a 2nd order process (V₂O?) 1) V+O \rightarrow VO

2) V+VO \rightarrow V₂O

<u>BD center</u> – bistability and donor activity

 $E_i^{BD(98K)} = E_c - 0.225 \text{ eV} (0/++); E_i^{BD(50K)} = E_c - 0.15 \text{ eV} (+/++)$

<u>BD center</u> – donor in the upper part of the gap (+ at RT)

- generated in oxygen rich material
- after CO⁶⁰- γ irradiation, can even overcompensate the effect of deep acceptors!

The bistability, donor activity and energy levels associate the BD centers with TDD2 \Rightarrow oxygen dimers are part of the defect structure

Impact of I_p and BD defects on detector properties

 $\Delta N_{eff}(T) = -n_T(T)$

 $\Delta I(T) = q_0 \cdot e_n(T) \cdot n_T(T) \cdot Vol$

change of N_{eff} and leakage current well described

⇒ first breakthrough in understanding the damage effects

Results – Extended Defects (clusters) (Ref. 7)

• After irradiation with 1 MeV neutrons, $\Phi = 5 \times 10^{13}$ cm⁻²

- H(116K), H(140K) and H(152K) traps for holes
- E(30K) trap for electrons
- H(116K) was detected previously
- H(152K) ~ was attributed so far to C_iO_i

Independent on the material

23 GeV protons

EPI-DO, 75 μ m, Φ_{eq} = 2.33x10¹⁴ cm⁻²

The generation of E(30K) center is much enhanced relative to of the H centers !

H(116K), H(140K), H(152K) and E(30K) - cluster related traps with enhanced field emission

•The 3D-Poole Frenkel effect formalism describes the experiments

 $E_{i}^{116K} = E_{v} + 0.33eV, \sigma_{p}^{-116K} = 4.10^{-14} \text{ cm}^{2}$ $E_{i}^{140K} = E_{v} + 0.36eV, \sigma_{p}^{-140K} = 2.5.10^{-15} \text{ cm}^{2}$ $E_{i}^{152K} = E_{v} + 0.42eV, \sigma_{p}^{-152K} = 2.3.10^{-14} \text{ cm}^{2}$ $E_{i}^{30K} = E_{c} - 0.1eV, \sigma_{n}^{-30K} = 2.3.10^{-14} \text{ cm}^{2}$

Are acceptors in the lower part of the gap and contribute with (-) space charge at RT

Are donors in the upper part of the gap and contribute with (+) space charge at RT

The impact of BD, E(30K), H(116K), H(140K) and H(152K) on N_{eff}

EPI-ST: N_d = 2.66x10¹³ cm⁻³; EPI-DO: N_d = 2.48x10¹³ cm⁻³; MCz: N_d = 4.94x10¹² cm⁻³

Differences between materials given by the initial doping (N_d) and [BD], only!

 \Rightarrow These are the defects responsible for the annealing of N_{eff} at RT!

EPI-DO 75 μ m: N_d = 2.48x10¹³ cm⁻³

1 MeV neutrons, $\Phi = 5 \times 10^{13} \text{ cm}^{-2}$

23GeV protons, Φ_{eq} = 2.33x10¹⁴ cm⁻²

Larger donor generation (E(30K) and BD) after 23GeV protons than after 1 MeV neutrons (~4.5 times) !

Summary – defects with strong impact on the device properties at operating temperature

Point defects

- E_i^{BD} = E_c 0.225 eV
- $\sigma_n^{BD} = 2.3 \cdot 10^{-14} \text{ cm}^2$
- $E_i^{T} = E_c 0.545 \text{ eV}$ $\Box \sigma_n^{T} = 2.3 \cdot 10^{-14} \text{ cm}^2$ $\Box \sigma p^{T} = 2.3 \cdot 10^{-14} \text{ cm}^2$

Cluster related centers

- E_i^{116K} = E_v + 0.33eV
- $\sigma_p^{116K} = 4.10^{-14} \text{ cm}^2$
- E_i^{140K} = E_v + 0.36eV
- $\sigma_p^{140K} = 2.5 \cdot 10^{-15} \text{ cm}^2$
- E_i^{152K} = E_v + 0.42eV
- $\sigma_p^{-152K} = 2.3 \cdot 10^{-14} \text{ cm}^2$
- E_i^{30K} = E_c 0.1eV
- $\sigma_n^{30K} = 2.3 \cdot 10^{-14} \text{ cm}^2$

Conclusions

- Direct correlation between defect investigations and device properties can be achieved!
- <u>Point defects</u> dependent on the material
 ⇒ defect engineering does work
- <u>Cluster related defects</u> independent on the material ⇒ Possibility of compensation with point defects via defect engineering

Acknowledgements

- Alexander von Humboldt Foundation
- University of Hamburg
- Zheng Li for Co⁶⁰ gamma irradiations at BNL
- Gregor Kramberger for 1 MeV neutron irradiations at Triga reactor Ljubljana
- Maurice Glasser for 23GeV proton irradiations
- CiS, Erfurt, for processing the diodes

References

1) I. Pintilie, E. Fretwurst, G. Lindstroem and J. Stahl, APPL. PHYS. LETT. 81 (1): 165-167 JUL 1 (2002) 2) I. Pintilie, E. Fretwurst, G. Lindstroem and J. Stahl, APPL. PHYS. LETT. 83 (15): 3216-3216 OCT 13 (2003) 3) I. Pintilie, E. Fretwurst, G. Lindstroem and J. Stahl, NUCL. INSTR. & METH. IN PHYS. RES. 514 (1-3): 18-24 (2003) 4) I.Pintilie, E. Fretwurst, G. Kramberger, G. Lindstroem, Z. Li, J. Stahl, PHYSICA B-CONDENSED MATTER 340: 578, (2003) 5) I. Pintilie, M. Buda, E. Fretwurst, G. Lindstroem and J. Stahl, NUCL. INSTR. & METH. IN PHYS. RES. 556 (1): 197-208 (2006) 6) E. Fretwurst, et al NUCL. INSTR. & METH. IN PHYS. RES. 583 (1), 58-63, (2007)

7) I. Pintilie, E. Fretwurst, G. Lindstroem, Appl. Phys. Lett. 92, 024101 (2008)