Infrared transparent detectors

Manuel Lozano G. Pellegrini, E. Cabruja, D. Bassignana, CNM (CSIC) I. Vila, M. Fernández, IFCA (CSIC)

Aligment in trackers

- Alignment of any (Silicon) tracker is crucial to obtain spatial resolutions comparable to the mechanical stability of the structures O(1-10 um)
- Offline software alignment (using tracks) needs reliable starting values, as provided by hardware alignment systems
- Laser system and:
 - Optical fiducials
 - Fully transparent detectors (amorphous silicon)
 - Silicon detector and IR laser (λ >1000nm)

Fully transparent detectors

- Proposed in 1995 by W. Blum, H. Kroha, P. Widmann from MPI, Munich
 - Implemented in 2001
 - Used in many experiments (TESLA, CMS, ALIC, ATLAS, HERA-B, LHCb, ZEUS, ...)
 - Up to ten layers
 - Geometrical correlation with particle detectors

Fig. 3 Cross section of transparent crystalline silicon strip photodiodes (parallel to the p^+ strips).

Manuel Lozano

Silicon detector and IR laser

- Proposed in 1995 by W. Blum, H. Kroha, P. Widmann from MPI, Munich (in the same paper)
- Not implemented at that time (they used amorphous silicon)
- Claimed up to 71% transmission light
- Recently implemented in AMS and CMS
- Advantage: no geometrical errors, same detectors as particles.
- **Problem: silicon not enough transparent**

- AMS novel Silicon alignment design used laser beams as straight tracks.
 - InfraRed Laser beams propagate through several Silicon modules
 - Silicon modules are made partially transparent to IR laser by removing (locally) the aluminum back metalization.
 - The modules need to be modified already at production time.
- The alignment of the CMS tracker has followed the same strategy.

Resolution better than 2 microns achieved

AMS Laser & Cosmics alignment

- Backside metal apertures
- Top side metal narrowing
- Transmittance distribution for a sensor batch (50-60%)

- Silicon alignment concept changed during the project.
- AMS scheme adopted:

Post-processing

- backside Al removal
- backside ARC coating
- Front side ARC reduced interstrip resistance ⇒ rejected Using a passivation (Si3N4) layer on top
- Sensor design is proprietary information.
 - CVD oxide: Probably SiO2 + Si3N4 passivation
- Transmittance 14-20%
 - (Sensor was opaque with AI)
 - λ=1075 nm
- Reflectivity <= 6%</p>

Manuel Lozano

R&D Goals

- Optimize sensor layout and technology design to achieve maximum transmitance
 - Reflectance should be close to zero
 - Some absorbance is needed to have signal
 - Target: T = 70%

Layout optimization

- Reduce surface covered by metal (aluminum)
- **Options:**
 - Use semi-transparent coatings
 - Use ITO (or similar) transparent coatings
 - Use semitransparent doped polysilicon
- We have selected
 - Just geometry: reduce metal area
 - Apertures in the back
 - Narrow metal (3 µm) in the strips
 - We have simulated the effect of metal narrowing in electric field ⇒ no problem

Technology optimization

- Optical simulation of microelectronic layers at IR wavelengths
- **Proposed laser** λ = 1140 nm
- No data published for Si at that wavelength
 - Intensive characterization with test samples

CSIC

Optical optimization

- Microstrip module as a multilayer media
- Optical characterization: elipsometry, reflectivity, transmitted beam reflection.
- **Compare results with very detailed sensor optical simulation**.
- Optimize sensor structure and coating for laser detection.

Optical optimization: process variations

- Effect of process thickness variations
 - Up to 20%
- Goal: robust design
 - Not the maximum transmittance, but constant intraand between wafers

Optical optimization: 2D structure

Effect of diffraction in metal strips

2D optical simulators

Very difficult simulation

Accurate optical modeling

Simplified model

Actual profiles

Profiles for optical simulator

CSIC

Manuel Lozano

First (optimistic) results

Robust configuration: $\Delta T/T=1.4\%$ if $\Delta d/d = 2(\%)$ In other words, ΔT does not go below 0.7 Only simulated 0th diffraction mode. Actual %T is even higher!!

Conclusions

- With the Physics Institute in Santander, Spain (IFCA-CSIC) we are developing strip detectors as transparent to IR light as possible for direct alignment.
- The design is both geometrical and technological
- It is based in very accurate optical simulations
- We are experiencing many difficulties:
 - Optical properties not published for the materials used
 - 2D optical simulators hard to use
 - We have to cope with normal fabrication tolerances (up to 10-20%)
- **First optimistic results achieved**
- Target: T>70%, R<5%</p>
- New mask design started
- Samples processed next year

