

N-in-n and n-in-p Pixel Sensor Production at CiS

Anna Macchiolo - MPP Munich

Investigation of the fluence range at which the planar pixel sensors can be used to instruments the trackers at SLHC

> Application of the results of many studies on n-side readout (mainly performed with micro-strip sensors within RD50) to pixel geometries and read-out

> Optmization of the planar pixel structures to obtain slimmer edges

Proposal to transform this submission into a common RD50 project

Production started as a joint effort of ATLAS groups participating in the Planar Pixel Sensor Project (coordinator C. Goessling, TU Dortmund) in view of the Insertable B-Layer upgrade and SLHC

Country	Institution		
Czech Rep.	AS CR Prague	RD50 member	
CERN	ATLAS Pixel group	RD50 member	
France	Lal Orsay		
	LPHNE / Paris VI		
Germany	MPP	RD50 member	
	TU Dortmund	RD50 member	
Spain	IFAE-CNM	RD50 member	
USA	UCSC	RD50 member	

Parallel productions of n-on-p pixel sensors on 6" wafers within the ATLAS Planar Pixel Sensor Project :

- HPK, organized by the KEK group
- MICRON, organized by the Liverpool group

Production with CiS (Erfurt, Germany) on 4" wafers

> It combines the "known" \rightarrow production of pixel sensors with a proven technology (n-in-n) with one of the two pixel sensor suppliers of the present system

with the "unknown" \rightarrow new bulk material for pixels (MCz and p-type) , new geometries to investigate active/slimmed edges

n-in-n batch	~ 10-15 Fz wafers	~ 5-10 MCz wafers	Double sided process
n-in-p batch	~ 15 Fz wafers	~ 5 MCz wafers	Single sided process

Foreseen production times: - 4 weeks for the mask production - 4 months for n-in-p

- 5 months for n-in-n

Inter-pixel isolation methods: homogenous p-spray and moderated p-spray for both batches

> We aim to investigate the maximum fluence at which planar pixel sensors can be operated, as a function of the bulk material, the production parameters, geometry, annealing scenarios, read-out electronics (threshold dependence)

Signal (V) with 25ns microstrip R/O

latest results from Liverpool and Ljubljana: CCE in strip devices after large fluences much higher than anticipated

reasons not yet clear measurements to confirm this behaviour in n-in-n pixel sensors are underway

Why planar pixel sensors?

Choice of bulk material

- Planar n-in-n sensors:
 - Proven technology ATLAS / CMS present pixel sensor
- Planar n-in-p sensors:
 - Intensive studies within RD50 designated material for the upgrade of the ATLAS SCT
 - Much less experience at the pixel level
 - Only one-sided processing required \rightarrow less costly
 - HV present on pixel / FE-side choice of insulation ?
- The goal of this production is to achieve best possible comparability between n-bulk and p-bulk sensors of different materials

Choice of bulk material: Fz and MCZ

- Explore MCZ silicon as possible alternative to Fz for n-in-n pixels.
- MCz shows better performances than Fz after neutron

- > ... and mixed irradiations. n-type MCz looks like a good candidate to be used in the outer pixel layers where there are comparable levels of charged and neutral radiation $\rightarrow N_{eff}$ compensation.
- Comparable behaviour of p-type Fz and MCz after neutron irradiation

- coverage lost due to inactive gaps/edges must not exceed 1-3%
- need to increase the active area coverage especially in the inner layers where it's not possible (in ATLAS at least) to have double side structures to recover dead module regions
- therefore, inactive edges have to shrink from ~1100 µm to O(100 µm) on at least 2 sides of the sensor
- Ideas to reach this:
 - fewer and narrower guard rings?
 - pixels right up to the edge?
 - avoidance of crystal-damaging cutting methods (sawing)?
 - Interested groups: Dortmund

IFAE-CNM Orsay- LPHNE UCSC

Active/Slim Edges: Current Activities (I)

- First designs with reduced guard-ring structures with respect to the present one to be included in the n-in-n and n-in-p batches
- TCAD simulations ongoing to optmize a narrower version of the guard-ring structure and the dimensions of the cutting region
- Laser cutting tests using current sensors and test structures under preparation
- Insert structures to be cut by dry etching at CNM (low damage surface in comparison with laser drilling or diamond saw cut)

- first results from saw dicing trials amidst the guard rings encouraging
- investigation of breakdown behaviour of unirradiated SingleChips ongoing
- cutting of irradiated samples under preparation

Example of IV curves obtained on a unirradiated FE-I3 Single Chip Sensors cutting between the 15th and the 16th guard-ring

Overview of sensor structures (I)

Need two different masks for n-in-n (guard rings on the back side) and n-in-p (guard rings on the top side)

n-in-p batch

- FE-I4 (new ATLAS ASIC for IBL and SLHC outer layers, 336 rows x 80 columns, 22.5x19.1 mm²) : only standard version of guard rings. p-spray and moderated p-spray
- **FE-I3** (10.4x9.8 mm²): standard and slimmed edges versions. Design compatible with dry etching process
- Microstrips (RD50 design) to study with an easier read-out the performances of devices with a slimmed edges. Investigation of isolation methods

NOT THE FINAL DESIGN- ONLY TO SHOW THE RELATIVE DIMENSIONS

Overview of sensor structures (II)

n-in-n batch

- Single Chip Module FE-I4 sensor
- FE-I3 Single Chip variants: Standard version

Slim edge versions

- Less guard rings (perhaps only one or even none at all, after irradiation they could be dispensable)
- Pixel opposite guard rings
- Both versions combined

n-in-p design on n-bulk wafer

- The sensor would only work after radiation induced type bulk inversion
- Direct comparison with n-in-p sensors possible

- Implementation of a common set of test-structure in the CiS, HPK and Micron productions
 - Diode
 - Mos
 - Micro-strip sensor (RD50 geometry)
 - FE-I3 Single Chip Module
- Choose homogenous p-spray as simplest isolation technique to compare. CiS and Micron production will not implement pstop.

- ➢ Production on p-type material → need to isolate the FE chip from the HV present at the sensor edges on the front side
- A BCB layer as additional passivation on the sensor front side should provide the necessary isolation

> IZM can deposit BCB as a post-processing step on 4" wafers before the UBM step \rightarrow additional mask needed

Post-processing on full wafers

- Wafer submission in preparation to study the ultimate fluence limit at which planar sensors could be good candidates for the pixel systems at SLHC
- Parallel production of n-in-n and n-in-p pixel sensors on Fz and MCz silicon
- Application of RD50 results on n-side readout sensors to pixel geometries and read-out systems
- Optimization of the pixel geometries to achieve slimmed / active edges

- Open to insert devices / test structures in the two batches proposed by RD50 groups interested to join this submission
- PSI (T. Rohe) already interested in joining the submission (discussion under way on the structures to insert) for R&D on p-type pixel modules

Back-up slides

. 2000

1500

500

50

100

Å 1000

Si3D-2E

200

250

300

)0 350 Noise (e)

⊢

⊢∳--

O. Roehne ATLAS Tracker Upgrade Workshop, Valencia 12th-14th D

150

C. daVia ATLAS B-Layer Workshop, CERN Sep. 28-30. 2

Sensor	Threshold [e]			Required
	Bare	Overdrive	In-time	Signal [e]
Si planar	2500	1300	3800	7600
Si 3D 2E	2500 (?)	1800	4300	8600
Si 3D 3E	2500 (?)	2800	5300	10600
Si 3D 4E	2500 (?)	3400	5900	11800
Diamond	1500	800	2300	4600