CMS and fwd detectors: Status of L1 trigger studies

Monika Grothe U Wisconsin / U Turin FP420 meeting Aug 2005

Studies provided input to FP420 proposal for LHCC Studies will go into CMS-TOTEM LOI and CMS Physics-TDR

Studies performed in CMS/TOTEM L1 trigger working group, meets once per week, participants:

- CMS ◆Antwerpen (Marek Tasevsky) ◆Bristol (Richard Croft, Dave Newbold) ◆Turin/Novara (Michele Arneodo, Marta Ruspa, MG) ◆Wisconsin (Sridhara Dasu, Creighton Hogg, MG)
- TOTEM CERN (Valentina Avati, Mario Deile)
 Genova (Fabrizio Ferro)
 Helsinki (Erik Bruecken, Ken Oesterberg, Fredrik Oljemark)

What happened so far ? A quick recap

The challenge: triggering on central exclusive diffractive production of a low mass Higgs with the L1 jet trigger

Our poster-child process: H (120 GeV, DPE prod) \rightarrow b bbar L1 signature without fwd detectors: 2 jets in CMS Cal, each with $E_T < 60$ GeV

\rightarrow Use rate/efficiency @ L1 jet E_T cutoff of 40 GeV as benchmark

With current software: L1 2-jet rate for central jets ($|\eta| < 3$) @ L1 jet E_T cutoff of 40 GeV for Lumi 2 x 10³³ cm⁻² s^{-1:} ~50 kHz, while considered acceptable: O(1 kHz)

Need additional conditions to trigger a 120 GeV Higgs with L1: Forward detectors !

Achieved so far

Answered:

- A) What can be done with central CMS L1 condition alone
- B) What can be won by adding T1/T2 as veto condition on L1
- C) What can be done with (central CMS + RP at 220 m) L1 cond.
- D) What could be achieved with RPs at 420m at HLT, if not at L1

With respect to:

- 1) L1 rates
- 2) L1 signal efficiency
- 3) Pile-up events

Reference luminosities: i) No pile-up case (e.g. for L= 10^{32} cm⁻² s⁻¹) ii) L = 10^{33} cm⁻² s⁻¹ iii) L = $2x \ 10^{33}$ cm⁻² s⁻¹ iv) L = 10^{34} cm⁻² s⁻¹

a) for signal:
EDDE and Exhume generators
b) for QCD background: Pythia

Results for RP trigger: L1 2-jet rates

Lumi	# Pile-up	L1 2-jet rate	Total	Reduction when requiring track in RP detectors				
nosity	events	[kHz] for	reduc				at 220 m & 420 m	
$[cm^{-2}s^{-1}]$	per bunch	$E_T > 40 \text{GeV}$	tion	at 220 m		at 420 m	(asymmetric)	
	crossing	per jet	needed		$-\xi < 0.1$			$-\xi < 0.1$
1×10^{32}	0	2.6	2	370				
1×10^{33}	3.5	26	20	7	15	27	160	380
2×10^{33}	7	52	40	4	10	14	80	190
5×10^{33}	17.5	130	100	- 3	5	6	32	75
1×10^{34}	35	260	200	2	3	4	17	39

Table 1: Reduction of rate from standard QCD processes for events with at least 2 central L1 jets with $E_T > 40$ GeV, achievable with requirements on tracks in RP detectors. Additional QCD rate reductions can be achieved with the H_T condition and a topological condition (see text). Each of them yields, for all luminosities listed, an additional reduction by a factor 2.

From write-up in HERA-LHC proceedings

Summary: L1 rates

To trigger on L1 H (120 GeV, DPE prod) \rightarrow b bbar: Reduce to O(1 kHz) L1 2-jet rate for central jets ($|\eta| < 3$) @ L1 jet E_T cutoff of 40 GeV to

- selection on central detector quantities
 H_T (i.e. 2 "isolated" jets): rate reduction by factor ~2
- 2) T1, T2 as vetoes, to impose the presence of rapidity gaps:
 - great to suppress the QCD background
 - kills signal as well as soon as there is pileup

3) one-arm Roman Pot trigger at 220 m

- excellent suppression of QCD background in absence of pile-up
- rejection power goes down with increasing pile-up contribution
- improve matters by restricting $\boldsymbol{\xi}$ acceptance to diff. peak
- another factor 2 gain by requesting 2-jets on opposite side in η of proton

N.B: All studies use reweighting of Pythia leading proton spectrum, necessary to reproduce HERA diffractive/leading proton data

Summary: L1 rates (II)

For H (120 GeV, DPE prod) \rightarrow b bbar, adding L1 conditions on the RPs at 220m is likely to provide a rate reduction sufficient to meet the CMS L1 bandwidth limits at luminosities up to 2x 10³³ cm⁻¹ s⁻¹

Asymmetric RP trigger with one proton in 220m RPs and, on the opposite side, one in the RPs at 420m

For H (120 GeV, DPE prod) \rightarrow b bbar, adding L1 conditions on the RPs at 220m and 420m would provide a rate reduction sufficient to meet the CMS L1 bandwidth limits at luminosities up to 10³⁴ cm⁻¹ s⁻¹

Unfortunately probably not possible on L1 - cannot beat the speed of light

Summary: L1 signal efficiencies

RP condition for 220m RPs reduces 2-jet L1 trigger signal efficiency by factor ~2
 Result of limited acceptance of RPs in diffractive peak region

Requiring 2-jet trigger threshold of ET=40 GeV and a proton be seen on one side in 220m RPs: signal efficiency for H(120 GeV) -> b bbar is of the order 25% (Exhume)

Requiring in addition that a proton be seen in the 420m RPs on the other side results in signal efficiency of about 15%

Requiring 2-jet trigger threshold of ET=40 GeV and a proton be seen on one side in 420m RPs: signal efficiency for H(120 GeV) -> b bbar is of the order 35%

Muon trigger may increase the signal efficiency by up to 10% under study

Balls still in the air

♦ H (120 GeV) \rightarrow b bbar:

Under-way:

- potential of cutting on match between RP xi measurement and xi value calculated with the 2 jets
- muon trigger and muon+jet trigger studies
- ♦ H (140 GeV) → W W*:

not yet addressed, but no problems with L1 trigger expected

- Single diffractive production of dijets, W's and Z's Production of signal MC is commencing in Wisconsin
- Trying to make accessible L1 trigger decision to offline-style analysis by recording MC run, event number and L1 yes/no decision

Balls still in the air (II)

TOTEM is investigating possibility of making available xi measurement of their RP detectors to L1 trigger (N.B. TOTEM trigger workshop Sep 15/16 2005)

Beam gas, beam halo:

estimates in progress, need to be incorporated in trigger studies

We are writing documentation

- Write-up of already available results in HERA-LHC proceedings article, almost finished
- Proceedings article will serve as core for contributions to CMS/TOTEM LOI and CMS Physics TDR
- Supporting notes in preparation:
 - •R. Croft (CMS) on efficiency and rate studies for the diffractive Higgs
 - •V. Avati, K. Oesterberg (Totem) on the RP acceptance calculations
 - F. Oljemark (Totem) on L1 jet calibration and diffractive Higgs Muon trigger studies - will be his Master's thesis
 F. Ferro (Totem) on T1/T2 track reco and trigger generation

RESERVE

Forward detectors

Monika Grothe, CMS and fwd detectors: L1 trigger studies, FP420 meeting Aug 05

Current MC situation

Available at U Wisconsin

All MC available for no pile-up and for 1×10^{33} , 2×10^{33} , 1×10^{34} For all MC L1 ntuple available

- 100k EDDE H (120) decaying to b bbar
- 100k Exhume H (120) decaying to b bbar
- 100k Exhume H (140) decaying to WW
- 500k full pile-up events (i.e. include diff and elastics)
- 1 M QCD background events, pythia

Reminder: Level-1 Jets

A jet = 144 trigger towers, with typical tower dimensions $\Delta \eta \times \Delta \phi = 0.09 \times 0.09$ Hence typical jet dimensions: $\Delta \eta \times \Delta \phi = 1 \times 1$

0.7 0.8 0.9 1 $x_{L}=P'/P_{beam}=1-\xi of fastest proton in Event$

ZEUS

ਣੂ<u>।</u> _

ę

 $p_T^2 < 0.5 \text{ GeV}^2$

ę

1/ס_{נש} dσ/d×נ

10

Pythia approx ok in diffractive peak

into account

Pile-up studies (II)

Beam halo background in RPs

Very preliminary estimates available (M. Deile) for $L = 0.5x \ 10^{33}$, $1.2x \ 10^{33}$ and $2x \ 10^{33}$

Example: Beam halo at L = $2x \ 10^{33}$ Estimates valid for RPs at 220 m and 420 m

- a) 2808 bunches with 0.52 x 10¹¹ p/bunch single-arm rate: 0.7 MHz = 0.02/bunch double-arm coincidence: 16 kHz = 0.0005/BX
- b) 936 bunches with 0.90 x 10^{11} p/bunch single-arm rate: 0.4 MHz = 0.04/bunch double-arm coincidence: 18kHz = 0.0018/BX