

Enabling Grids for E-sciencE

Integrating glue 2.0 in gLite WMS

S.Monforte (INFN-CT)

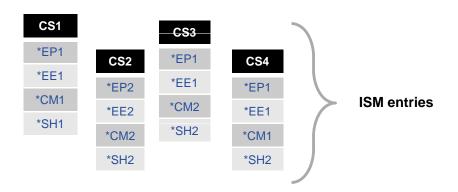
JRA1 All Hands Meeting (Prague)
5-7 November 2008

www.eu-egee.org

- The new glue 2.0 schema definition despite the initial complexity is generally well conceived
 - conceptual models of both computing and storage service
 - based on simple specialized entities
 - connected by essential and well formed relations
 - describing meaningful entities
- Henceforth in the presentation we will focus only on the computing models
 - the same considerations and implementation design apply at MM level for the storage model

glue schema 2.0 and MM

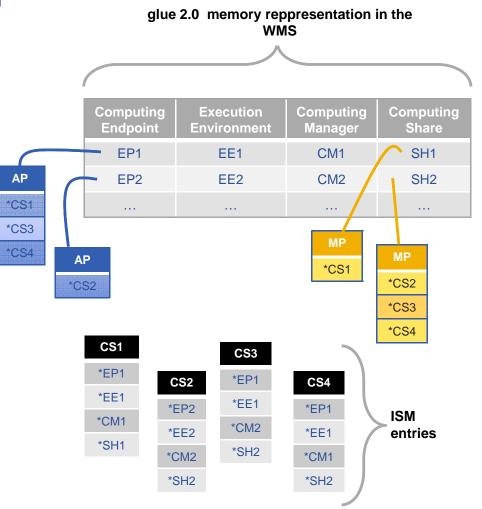
- The computing entities required for MM purposes are basically
 - ComputingService
 - ComputingEndPoint
 - AccessPolicy
 - ComputingShare
 - MappingPolicy
 - ExecutionEnvironment
 - ApplicationEnvironment
 - ComputingManager
- The ComputingService aggregates all the other entities forming a connected set
 - provides the relations between entities describing how a given endpoints may expose a certain environment handled by the relevant manager via a particular share


glue2.0 and MM: memory model

Enabling Grids for E-science

- glue2.0 information once acquired are converted in ClassAd
 - each sensible entity is represented by its own classad
 - stored in the WMS as a sort of flyweight design pattern
 - reducing the memory image of the WMS
- The ISM will be a simple collection of pointers to the relevant data
 - each item stores pointers to the aggregated entities
 - representing a ComputingService entity
- glue2.0 provides different authorization policies
 - AccessPolicy
 - ComputingEndpoint
 - MappingPolicy
 - ComputingShare
- Both Access and Mapping policies should be matched against user credentials

			'
Computing Endpoint	Execution Environment	Computing Manager	Computing Share
EP1	EE1	CM1	SH1
EP2	EE2	CM2	SH2


glue2.0 and MM: memory model

Enabling Grids for E-sciencE

- The new AuthzFramework will be used during the MM
 - in gLite 3.1 authorization check is performed at classad match evaluation time

 authorization constraints are expressed as requirements inserted in the CEAd

- Keeping tracks of
 - Services exposing Endpoints
 - access policy
 - Services exposing Shares
 - mapping policy
- simplifies the Authorization filtering phase of the MM
 - for each EP calling the Authz API it yields
 - the set of CS matching the user credentials via AP
 - for each SH exposed by matching CS
 - remove CS not matching user credentials via MP
- The actual ClassAd match will be then performed on resulting CSs

glue2.0 and MM

- The actual classad representation of a ComputingService will be generated on the fly at MM time by composing the relevant data
 - two possible solutions
 - all information flattened in one classad
 - attribute names prefixed by the name of entity
 - o current behaviour in gLite 3.1
 - linear construction complexity O(n)
 - o ClassAd::Update, ClassAd::Merge
 - structured nested classads
 - immediate construction complexity O(1)
 - swapping pointers to the relevant data
 - o ClassAd::Insert, ClassAd::Remove
 - Users may specify attributes in the requirements expression of the JDL following the schema structure
 - o other.ComputingService.ExecutionEnv.<attr>
 - o member(<value>, other.ComputingService.Share.<attr>)

```
ComputingService = [
Endpoint = [
...
]
Share = [
...
]
ExecutionEnv = [
...
]
Manager = [
...
]
```


glue2.0 and MM: matching AEs

Enabling Grids for E-sciencE

- ExecutionEnvironments offers zero or more ApplicationEnvironments
 - providing the description about individual software packages
- AEs can be shared between different EEs
 - again storing the APs using a flyweight pattern may reduce the required memory
- AEs can be inserted in the Environment
 - as a list of ClassaAds
 - users should use gang-matching expressions

```
anyMatch(
  other. Computi ngServi ce. Executi onEnv. Appl i cati onEnv,
target. Parallel Support == true
);
```

- defining a specialized classad plugin function

 generateAE(ExecutionEnv. ID);
 - generate the list of relevant AEs at classad evaluation time
 - o if and only if AEs constraints are actually specified in the requirements expression

```
ExecutionEnv = [
   ApplicationEnv = {
      [ LocalID = ... ],
      ...
   [ LocalID = ... ]
   }
]
```

ExecutionEnv = [
ID = ...

ApplicationEnv =

```
JRA1 All Hands Meeting, Prague, 5-7 November 2008
```


Conclusions

- Supporting the glue 2.0 schema in the gLite WMS means
 - restructuring part of the MM engine and the ISM
 - this is anyway required for other reasons:
 - integrating the new Authz framework
 - overcome some limitation of the current MM engine
 - o bug #37911: ISM purchaser should handle Glue 1.3 subcluster software entity
 - o bug #36394: gang-matching should be updated for the new SE schema (glue 1.3, SRM 2)
- Is there any real machine compliant with glue 2.0 so that we can start playing with the schema?
- Is there any deadline scheduled for the transition to glue 2.0 ?

8