
Enabling Grids for E-sciencE

IPvX (AF-independent) programming
introduction

Basic introduction to C/C++,JAVA, Perl,
Python IPv6 programming

High level networking libraries

EGEE-III INFSO-RI-222667

www.eu-egee.org

EGEE and gLite are registered trademarks

High level networking libraries

Rino Nucara (GARR) – rino.nucara@garr.it
Mario Reale (GARR) – mario.reale@garr.it
Etienne Duble (UREC) – etienne.duble@urec.cnrs.fr v0.6

This document is available at https://edms.cern.ch/document/976004

IPv6 tutorial @ JRA1/SA3 all hands
Meeting 6 Nov 2008 - Prague

Enabling Grids for E-sciencE

• IPv4 and IPv6 will co-exist for a number of years in future
• IPvX Servers and Clients will need to connect to IPvX

Clients and Servers
• To write compatible applications with both IPv4 and IPv6

the following two solutions are available:
– 1) Use one IPv6 Socket, able to handle both IPv4 and IPv6

AF-independent
programming: the idea

EGEE-III INFSO-RI-222667 2

– 1) Use one IPv6 Socket, able to handle both IPv4 and IPv6
IPv4 can be seen as a special case of IPv6 (IPv4-mapped addresses)

– 2) Open one Socket for IPv4 and one Socket for IPv6.
Prevent IPv6 Socket from the possibility to deal with IPv4 connections

• To build AF-independent applications one must not
a-priori assume a specific version of the IP protocol
– For doing this, proper functions have been introduced

Enabling Grids for E-sciencE

Dual stack and
separated stack

DUAL STACK OS SEPARATED STACKS OS (obsolete)

EGEE-III INFSO-RI-222667 3

IPv4 traffic
IPv4 mapped into IPv6 traffic
IPv6 traffic

Enabling Grids for E-sciencE

Two kinds of socket servers

On dual-stack systems, in order to accept both IPv4 and IPv6, socket servers can
be designed in two ways:

EGEE-III INFSO-RI-222667 4

Traffic bound to one IPv4 socket
Traffic bound to one IPv6 socket

Enabling Grids for E-sciencE

One IPv6 Socket

EGEE-III INFSO-RI-222667 5

Dual Stack Single IPv4 or IPv6 stacks

Enabling Grids for E-sciencE

two sockets

EGEE-III INFSO-RI-222667 6

Dual Stack or separated stack Single IPv4 or IPv6 stacks

Enabling Grids for E-sciencE

Introduction to
IPv6 Programming

EGEE-III INFSO-RI-222667 7

IPv6 Programming
In C

Enabling Grids for E-sciencE

IPv6 API

• IETF standardized two sets of extensions: RFC 3493 and RFC
3542.

• RFC 3493 Basic Socket Interface Extensions for IPv6
– Is the latest specification (the successor to RFC 2133 and RFC

2553. It is often referred to as “2553bis”)
– Provides standard definitions for:

Core socket functions
Address data structures
Name-to-Address translation functions

EGEE-III INFSO-RI-222667 8

Name-to-Address translation functions
Address conversion functions

• RFC 3542 Advanced Sockets Application Program Interface (API)
for IPv6
– Is the latest specification and is the successor to RFC2292 (it is

often referred to as “2292bis”)
– Defines interfaces for accessing special IPv6 information:

IPv6 header
extension headers
extend the capability of IPv6 raw socket

Enabling Grids for E-sciencE

new address family name

#define AF_INET6 10
#define PF_INET6 AF_INET6

A new address family name, AF_INET6 was defined for IPv6; the related
protocol family is PF_INET6, and names belonging to it are defined as follow:

EGEE-III INFSO-RI-222667 9

socket(PF_INET,SOCK_STREAM,0); /* TCP socket */
socket(PF_INET,SOCK_DGRAM,0); /* UDP socket */

socket(PF_INET6,SOCK_STREAM,0); /* TCP socket */
socket(PF_INET6,SOCK_DGRAM,0); /* UDP socket */

IPv4 source code:

IPv6 source code:

Enabling Grids for E-sciencE

Address Data Structures

• IPv4
– struct sockaddr_in
– struct sockaddr

• IPv6

EGEE-III INFSO-RI-222667 10

• IPv6
– struct sockaddr_in6

• IPv4/IPv6/…
– struct sockaddr_storage

Enabling Grids for E-sciencE

IPv4 Address Data Structures

struct in_addr {
uint32_t s_addr; // 32-bit IPv4 address (4 bytes)

struct sockaddr {
sa_family_t sa_family; // address family, AF_xxx
char sa_data[14]; // 14 bytes of protocol address

};

EGEE-III INFSO-RI-222667 11

// network byte ordered
};

struct sockaddr_in {
sa_family_t sin_family; // Address family (2 bytes)
in_port_t sin_port; // Port number (2 bytes)
struct in_addr sin_addr; // Internet address (4 bytes)
char sin_zero[8]; // Empty (for padding) (8 bytes)

}

Enabling Grids for E-sciencE

struct in6_addr {
uint8_t s6_addr[16]; // 128-bit IPv6 address (N.B.O.)

};

struct sockaddr_in6 {
sa_family_t sin6_family; //AF_INET6
in_port_t sin6_port; //transport layer port # (N.B.O.)
uint32_t sin6_flowinfo; //IPv6 flow information (N.B.O.)
struct in6_addr sin6_addr; // IPv6 address
uint32_t sin6_scope_id; //set of interfaces for a scope

}

IPv6 Address Data Structures
(1/3)

EGEE-III INFSO-RI-222667 12

}

sockaddr_in6 structure holds IPv6 addresses and is defined as a result of
including the <netinet/in.h> header.

sin6_family overlays the sa_family field when the buffer is cast to a sockaddr
data structure. The value of this field must be AF_INET6. (2Byte)

sin6_port contains the 16-bit UDP or TCP port number. This field is used in
the same way as the sin_port field of the sockaddr_in structure. The port
number is stored in network byte order. (2Byte)

Enabling Grids for E-sciencE

struct in6_addr {
uint8_t s6_addr[16]; // 128-bit IPv6 address (N.B.O.)

};

struct sockaddr_in6 {
sa_family_t sin6_family; //AF_INET6
in_port_t sin6_port; //transport layer port # (N.B.O.)
uint32_t sin6_flowinfo; //IPv6 flow information (N.B.O.)
struct in6_addr sin6_addr; // IPv6 address
uint32_t sin6_scope_id; //set of interfaces for a scope

}

IPv6 Address Data Structures
(2/3)

EGEE-III INFSO-RI-222667 13

}

sin6_flowinfo is a 32-bit field intended to contain flow-related information.
The exact way this field is mapped to or from a packet is not currently
specified. Until its exact use will be specified, applications should set this
field to zero when constructing a sockaddr_in6, and ignore this field in a
sockaddr_in6 structure constructed by the system. (4Byte)

sin6_addr is a single in6_addr structure. This field holds one 128-bit IPv6
address. The address is stored in network byte order. (16Byte)

Enabling Grids for E-sciencE

struct in6_addr {
uint8_t s6_addr[16]; // 128-bit IPv6 address (N.B.O.)

};

struct sockaddr_in6 {
sa_family_t sin6_family; //AF_INET6
in_port_t sin6_port; //transport layer port # (N.B.O.)
uint32_t sin6_flowinfo; //IPv6 flow information (N.B.O.)
struct in6_addr sin6_addr; // IPv6 address
uint32_t sin6_scope_id; //set of interfaces for a scope

}

IPv6 Address Data Structures
(3/3)

EGEE-III INFSO-RI-222667 14

sin6_scope_id is a 32-bit integer that identifies a set of interfaces as
appropriate for the scope of the address carried in the sin6_addr field. The
mapping of sin6_scope_id to an interface or set of interfaces is left to
implementation and future specifications on the subject of scoped addresses.
(4Byte)
RFC 3493 did not define the usage of the sin6_scope_id field because at the
time there was some debate about how to use that field.
The intent was to publish a separate specification to define its usage, but that
has not happened.

Enabling Grids for E-sciencE

To communicate with node A or node C, node B has to
disambiguate between them with a link-local address you
need to specify the scope identification.

Node A Node B Node C

IPv6: sin6_scope_id

EGEE-III INFSO-RI-222667 15

fe80::1 fe80::1

ether0 ether1

String representation of a scoped IPv6 address is
augmented with scope identifier after % sign (es.
Fe::1%ether1).
NOTE! Scope identification string is implementation-
dependent.

Enabling Grids for E-sciencE

16 byte 28 byte
sockaddr_in sockaddr_in6

128 byte
sockaddr_storage

family

Padding

Sockaddr_storage

EGEE-III INFSO-RI-222667 16

. . .

0

20

40

60

80

100

120

140

s.a. s.a.6 s.a. s.

Padding

Enabling Grids for E-sciencE

Socket Options

A number of new socket options are defined for IPv6:

IPV6_UNICAST_HOPS
IPV6_MULTICAST_IF
IPV6_MULTICAST_HOPS
IPV6_MULTICAST_LOOP
IPV6_JOIN_GROUP
IPV6_LEAVE_GROUP

EGEE-III INFSO-RI-222667 17

IPV6_V6ONLY

All of these new options are at the IPPROTO_IPV6 level (specifies the code
in the system to interpret the option).

The declaration for IPPROTO_IPV6 is obtained by including the header
<netinet/in.h>.

Enabling Grids for E-sciencE

IPV6_V6ONLY

AF_INET6 sockets may be used for both IPv4 and IPv6
comunication.

- the socket can be used to send and receive IPv6 packets
only.

- by default is turned off.

EGEE-III INFSO-RI-222667 18

int on = 1;

if(setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(char *)&on,sizeof(on))==-1)
perror("setsockopt IPV6_V6ONLY");

else
printf("IPV6_V6ONLY set\n");

An example usage of this option is to allow two versions of the same
server process to run on the same port, one providing service over IPv6,
the other providing the same service over IPv4 (separated Stack).

Enabling Grids for E-sciencE

struct sockaddr_in6 sin6, sin6_accept;
socklen_t sin6_len; int s0, s; int on, off; char hbuf[NI_MAXHOST];

memset(&sin6,0,sizeof(sin6));
sin6.sin6_family=AF_INET6; sin6.sin6_len=sizeof(sin6);
sin6.sin6_port=htons(5001);

s0=socket(AF_INET6,SOCK_STREAM,IPPROTO_TCP);
on=1; setsockopt=(s0,SOL_SOCKET, SO_REUSEADDR, &on,sizeof(on));

#ifdef USE_IPV6_V6ONLY
on=1;
setsockopt(s0,IPPROTO_IPV6, IPV6_V6ONLY,&on,sizeof(on));

#

IPV6_V6ONLY example

EGEE-III INFSO-RI-222667 19

#else
off=0;
setsockopt(s0,IPPROTO_IPV6, IPV6_V6ONLY,&off,sizeof(off));

#endif

bind(s0,(const struct sockaddr *)&sin6, sizeof(sin6));
listen(s0,1);
while(1){

sin6_len=sizeof(sin6_accept);
s=accept(s0,(struct sockaddr *)&sin6_accept, &sin6_len);
getnameinfo((struct sockaddr *)&sin6_accept, sin6_len, hbuf,

sizeof(hbuf), NULL, 0, NI_NUMERICHOST);
printf("accept a connection from %s\n",hbuf);
close(s);

}

Enabling Grids for E-sciencE

Running the example’s code

telnet ::1 5001

telnet 127.0.0.1 5001

Without using USE_IPV6_V6ONLY:

Accept a connection from ::1

Accept a connection from ::ffff:127.0.0.1

EGEE-III INFSO-RI-222667 20

telnet ::1 5001

telnet 127.0.0.1 5001

Using USE_IPV6_V6ONLY

Accept a connection from ::1

Trying 127.0.0.1 …
telnet: connection to address 127.0.0.1: Connection refused

Enabling Grids for E-sciencE

Summary on IPV6_V6ONLY

• 1) If IPV6_V6ONLY = 1
– a)The socket will only accept IPv6 connections
– b)You can create another IPv4 socket on the same port

• 2) If IPV6_V6ONLY = 0
– a)The socket will accept both IPv4 and IPv6 connections

EGEE-III INFSO-RI-222667 21

– a)The socket will accept both IPv4 and IPv6 connections
– b)You cannot create another IPv4 socket on the same port

(it would fail with error EADDRINUSE)

If you don’t set or unset IPV6_V6ONLY in setsockopt in
your program its value will be the one at
/proc/sys/net/ipv6/bindv6only (unpredictable for
applications) so you risk 1a or 2b

Enabling Grids for E-sciencE

“Two sockets” and “Only one IPv6 socket”

In the following slides implementation examples of the

“Two sockets” and “One IPv6 socket” scenarios are presented

EGEE-III INFSO-RI-222667 22

Enabling Grids for E-sciencE

int ServSock, csock;
struct sockaddr addr, from;
...

ServSock = socket(AF_INET6, SOCK_STREAM,PF_INET6);

bind(ServSock, &addr, sizeof(addr));
do {

csock = accept(ServSocket, &from,sizeof(from));

Only one IPv6 socket

EGEE-III INFSO-RI-222667 23

p
doClientStuff(csock);

} while (!finished);

$ netstat -nap |grep 5002
tcp6 0 0 :::5002 :::* LISTEN 3720/a.out

Enabling Grids for E-sciencE

...
ServSock[0] = socket(AF_INET6, SOCK_STREAM, PF_INET6);
ServSock[1] = socket(AF_INET, SOCK_STREAM, PF_INET);
...
setsockopt(s[0], IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof(on));
...
bind(ServSock[0], AI0->ai_addr, AI0->ai_addrlen);
bind(ServSock[1], AI1->ai_addr, AI1->ai_addrlen);
...
select(2, &SockSet, 0, 0, 0);
if (FD ISSET(ServSocket[0], &SockSet)) {

Two Sockets (1/3)

EGEE-III INFSO-RI-222667 24

(_ ([],)) {
// IPv6 connection
csock = accept(ServSocket[0], (LPSOCKADDR)&From,FromLen);
...

}
if (FD_ISSET(ServSocket[1], &SockSet)) {

// IPv4 connection
csock = accept(ServSocket[1], (LPSOCKADDR)&From, FromLen);
...

}

$ netstat -nap |grep 5002

tcp 0 0 0.0.0.0:5002 0.0.0.0:* LISTEN 3720/a.out
tcp6 0 0 :::5002 :::* LISTEN 3720/a.out

Enabling Grids for E-sciencE

Two Sockets (2/3)
...
ServSock[0] = socket(AF_INET6, SOCK_STREAM, PF_INET6);
ServSock[1] = socket(AF_INET, SOCK_STREAM, PF_INET);
...
setsockopt(s[0], IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof(on));
...
bind(ServSock[0], AI0->ai_addr, AI0->ai_addrlen);
bind(ServSock[1], AI1->ai_addr, AI1->ai_addrlen);
...
select(2, &SockSet, 0, 0, 0);
if (FD ISSET(ServSocket[0], &SockSet)) { IPV6_V6ONLY

EGEE-III INFSO-RI-222667 25

(_ ([],)) {
// IPv6 connection
csock = accept(ServSocket[0], (LPSOCKADDR)&From,FromLen);
...

}
if (FD_ISSET(ServSocket[1], &SockSet)) {

// IPv4 connection
csock = accept(ServSocket[1], (LPSOCKADDR)&From, FromLen);
...

}

$ netstat -nap |grep 5002

tcp 0 0 0.0.0.0:5002 0.0.0.0:* LISTEN 3720/a.out
tcp6 0 0 :::5002 :::* LISTEN 3720/a.out

IPV6_V6ONLY
option allows two versions
of the same server process
to run on the same port, one
providing service over IPv6,
the other providing the same
service over IPv4.

Enabling Grids for E-sciencE

IPv6 connection
accept a connection from ::1

Previous Example Code Output:

IPv4 connection

$ telnet ::1 5002

CLIENT SERVER

Two Sockets (3/3)

EGEE-III INFSO-RI-222667 26

IPv4 connection
accept a connection from 127.0.0.1$ telnet 127.0.0.1 5002

$ netstat -nap |grep 5002

tcp 0 0 0.0.0.0:5002 0.0.0.0:* LISTEN 3720/a.out
tcp6 0 0 :::5002 :::* LISTEN 3720/a.out

The two sockets are listening on the server :

Enabling Grids for E-sciencE

Output summary

Only one IPv6 Socket

CLIENT SERVER

telnet 127.0.0.1 5001 Accept a connection from ::ffff:127.0.0.1

$ netstat -nap |grep 5001
tcp6 0 0 :::5001 :::* LISTEN 3735/a.out

EGEE-III INFSO-RI-222667 27

IPv4 connection
accept a connection from 127.0.0.1

$ telnet 127.0.0.1 5002

$ netstat -nap |grep 5002
tcp 0 0 0.0.0.0:5002 0.0.0.0:* LISTEN 3720/a.out
tcp6 0 0 :::5002 :::* LISTEN 3720/a.out

Two Socket

CLIENT SERVER

Enabling Grids for E-sciencE

Old address conversion functions (working only with IPv4) have been

#include <netinet/in.h>

unsigneg long int htonl (unsigned long int hostlong)
unsigned short int htons (unsigned short int hostshort)
unsigned long int ntohl (unsigned long int netlong)
unsigned short int ntohs (unsigned short int netshort)

DEPRECATED

Address conversion functions

EGEE-III INFSO-RI-222667 28

Old address conversion functions (working only with IPv4) have been
replaced by new IPv6 compatible ones:

#include <arpa/inet.h>

int inet_pton(int family, const char *src, void *dst);
const char *inet_ntop(int family, const void *src, char *dst,
size_t cnt);

NEW

Enabling Grids for E-sciencE

• New functions have been defined to support both protocol
versions (IPv4 and IPv6).

• A new way of programming and managing the socket has been
introduced: network trasparent programming.

• Network programmers should write code without a-priori
assuming a specific IP version (IPv4 or IPv6)

• According to this new approach the following functions have
been defined:

Network Transparent Programming

EGEE-III INFSO-RI-222667 29

been defined:
– getaddrinfo
– getnameinfo

• For Network Transparent Programming it is important to pay
attention to:
– Use of name instead of address
– Avoid the use of hard-coded numerical addresses
– Use getaddrinfo and getnameinfo functions.

Enabling Grids for E-sciencE

Name to Address Translation Function:
getaddrinfo

#include <netdb.h>
struct hostent *gethostbyname(const char *name)

The gethostbyname() for IPv4 and gethostnyname2() function created for
IPv6 was deprecated in RFC 2553 and was replaced by getaddrinfo()
function.

#include <netdb.h>
#include <sys/socket.h>
struct hostent *gethostbyname2(const char *name, int af)

DEPRECATED

DEPRECATED

EGEE-III INFSO-RI-222667 30

#include <netdb.h>
#include <sys/socket.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

getaddrinfo() takes as input a service name like “http” or a numeric port
number like “80” as well as an FQDN and returns a list of addresses along
with the corresponding port number.

The getaddrinfo function is very flexible and has several modes of operation.
It returns a dynamically allocated linked list of addrinfo structures
containing useful information (for example, sockaddr structure ready for use).

Enabling Grids for E-sciencE

Nodename and Service Name Translation

int getaddrinfo(…)

const char *nodename
Host name or
Address string

Function returns:
0 for success
not 0 for error

(see gai_strerror)

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

EGEE-III INFSO-RI-222667 31

const char *servname

const struct addrinfo *hints

struct addrinfo **resServicename or
decimal port

(“http” or 80)

Address string

Options
Es. nodename is

a numeric host addressing

Enabling Grids for E-sciencE

getaddrinfo input arguments

struct addrinfo {
int ai_flags; // AI_PASSIVE, AI_CANONNAME, ..

int ai_family; // AF_xxx

int ai_socktype; // SOCK_xxx

int ai_protocol; // 0 or IPPROTO_xxx for IPv4 and IPv6
socklen_t ai_addrlen; // length of ai_addr
char *ai_canonname; // canonical name for nodename
struct sockaddr *ai_addr; // binary address
str ct addrinfo *ai ne t // ne t str ct re in linked list

The caller can set only these values in the hints structure:

EGEE-III INFSO-RI-222667 32

struct addrinfo *ai_next; // next structure in linked list
};

ai_family: The protocol family to return (es. AF_INET, AF_INET6,
AF_UNSPEC). When ai_family is set to AF_UNSPEC, it means the caller will
accept any protocol family supported by the operating system.
ai_socktype: Denotes the type of socket that is wanted: SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW. When ai_socktype is zero the caller will
accept any socket type.
ai_protocol: Indicates which transport protocol is desired, IPPROTO_UDP or
IPPROTO_TCP. If ai_protocol is zero the caller will accept any protocol.

Enabling Grids for E-sciencE

getaddrinfo input arguments: ai_flag (1/3)

struct addrinfo {

int ai_flags; // AI_PASSIVE, AI_CANONNAME, ..
[…]
};

ai_flags shall be set to zero or be the bitwise-inclusive OR of one or more of
the values:

AI_PASSIVE
if it is specified the caller requires addresses that are suitable for accepting

EGEE-III INFSO-RI-222667 33

if it is specified the caller requires addresses that are suitable for accepting
incoming connections. When this flag is specified, nodename is usually
NULL, and address field of the ai_addr member is filled with the "any“
address (e.g. INADDR_ANY for an IPv4 or IN6ADDR_ANY_INIT for an
IPv6).

AI_CANONNAME
the function shall attempt to determine the canonical name corresponding to
nodename (The first element of the returned list has the ai_canonname filled
in with the official name of the machine).

Enabling Grids for E-sciencE

struct addrinfo {

int ai_flags; // AI_PASSIVE, AI_CANONNAME, ..
[…]
};

AI_NUMERICHOST
specifies that nodename is a numeric host address string. Otherwise, an
[EAI_NONAME] error is returned. This flag shall prevent any type of name
resolution service (for example, the DNS) from being invoked.

getaddrinfo input arguments: ai_flag (2/3)

EGEE-III INFSO-RI-222667 34

AI_NUMERICSERV
specifies that servname is a numeric port string. Otherwise, an
[EAI_NONAME] error shall be returned. This flag shall prevent any type of
name resolution service (for example, NIS+) from being invoked.

AI_V4MAPPED
if no IPv6 addresses are matched, IPv4-mapped IPv6 addresses for IPv4
addresses that match nodename shall be returned. This flag is applicable
only when ai_family is AF_INET6 in the hints structure.

Enabling Grids for E-sciencE

struct addrinfo {

int ai_flags; // AI_PASSIVE, AI_CANONNAME, ..
[…]
};

AI_ALL
If this flag is set along with AI_V4MAPPED when looking up IPv6 addresses
the function will return all IPv6 addresses as well as all IPv4 addresses. The

getaddrinfo input arguments: ai_flag (3/3)

EGEE-III INFSO-RI-222667 35

the function will return all IPv6 addresses as well as all IPv4 addresses. The
latter mapped to IPv6 format.

AI_ADDRCONFIG
Only addresses whose family is supported by the system will be returned:
IPv4 addresses shall be returned only if an IPv4 address is configured on the
local system, and IPv6 addresses shall be returned only if an IPv6 address is
configured on the local system. The loopback address is not considered for
this case as valid as a configured address.

Enabling Grids for E-sciencE

getaddrinfo output

If getaddrinfo returns 0 (success) res argument is filled in with a pointer to a
linked list of addrinfo structures (linked through the ai_next pointer.

In case of multiple addresses
associated with the hostname
one struct is returned for each
address (usable with

EGEE-III INFSO-RI-222667 36

address (usable with
hint.ai_family, if specified).

One struct is returned also for
each socket type (according to
hint.ai_socktype).

Enabling Grids for E-sciencE

getaddrinfo output

struct addrinfo {
int ai_flags; /* AI_PASSIVE, AI_CANONNAME, .. */
int ai_family; /* AF_xxx */
int ai_socktype; /* SOCK_xxx */
int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
socklen_t ai_addrlen; /* length of ai_addr */
char *ai_canonname; /* canonical name for nodename */
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */

EGEE-III INFSO-RI-222667 37

_
};

The information returned in the addrinfo structures is ready for socket calls
and ready to use in the connect, sendto (for client) or bind (for server)
function.

ai_addr is a pointer to a socket address structure.
ai_addrlen is the length of this socket address structure.
ai_canonname member of the first returned structure points to the
canonical name of the host (if AI_CANONNAME flag is set in hints structure).

Enabling Grids for E-sciencE

Nodename and Service Name Translation

int getnameinfo(…)

struct sockaddr *sa
char *host

Function returns:
0 for success
not 0 for error

String host name

int getnameinfo (const struct sockaddr *sa,
socklen_t salen,char *host, socklen_t hostlen,
char *service, socklen_t servicelen, int flags);

EGEE-III INFSO-RI-222667 38

struct sockaddr *sa

socklen_t salen

socklen_t hostlen
Socket address

to be converted in a
Human/readable string

options
int flags socklen_t servicelen

char *service
Lenght of sa structure

Lenght of host

String host name

Service name

Lenght of service

Enabling Grids for E-sciencE

getnameinfo (flags)

flags changes the default actions of the function.

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo (const struct sockaddr *sa, socklen_t salen,
char *host, socklen_t hostlen,
char *service, socklen_t servicelen,

int flags);

EGEE-III INFSO-RI-222667 39

flags changes the default actions of the function.

By default the fully-qualified domain name (FQDN) for the host shall be
returned, but:

•If the flag bit NI_NOFQDN is set, only the node name portion of the
FQDN shall be returned for local hosts.

•If the flag bit NI_NUMERICHOST is set, the numeric form of the host's
address shall be returned instead of its name.

•[…]

Enabling Grids for E-sciencE

getnameinfo examples

• Two examples will now follow, illustrating the usage
of getaddrinfo():
– First illustrates the usage of the result from getaddrinfo() for

subsequent calls to socket() and to connect().
– Second passively opens listening sockets to accept

incoming HTTP.

EGEE-III INFSO-RI-222667 40

incoming HTTP.

Enabling Grids for E-sciencE

struct addrinfo hints,*res,*res0; int error; int s;

memset(&hints,0,sizeof(hints));
hints.ai_family=AF_UNSPEC;
hints.ai_socktype=SOCK_STREAM;
error=getaddrinfo("www.kame.net","http",&hints,&res0);
[…]

s=-1;
for(res=res0; res; res=res->ai next){

getnameinfo examples 1

EGEE-III INFSO-RI-222667 41

_ {
s=socket(res->ai_family, res->ai_socktype,res->ai_protocol);
if(s<0) continue;
if(connect(s,res->ai_addr,res->ai_addrlen)<0){

close(s); s=-1; continue;}
break; // we got one!

}
if(s<0){fprintf(stderr,"No addresses are reachable");exit(1);}
freeaddrinfo(res0);

}

Enabling Grids for E-sciencE

struct addrinfo hints, *res, *res0;
int error; int s[MAXSOCK]; int nsock; const char *cause=NULL;

memset (&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.aisocktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;

error=getaddrinfo(NULL,"http", &hints, &res0);
nsock=0;
for(res=res0; res && nsock<MAXSOCK; res=res->ai_next)
{
s[nsock]=socket(res->ai_family, res->ai_socktype, res->ai_protocol);

getnameinfo examples 2

EGEE-III INFSO-RI-222667 42

if(s[nsock]<0) continue;
#ifdef IPV6_V6ONLY
if(res->ai_family == AF_INET6){int on=1;
if(setsockopt(s[nsock],IPPROTO_IPV6,IPV6_V6ONLY,&on,sizeof(on)))
{close(s[nsock]);continue;}}

#endif
if(bind(s[nsock], res->ai_addr, res->ai_addrlen)<0)
{close(s[nsock]);continue;}
if(listen(s[nsock],SOMAXCONN)<0){close(s[nsock]);continue;}

nsock++;
}
if(nsock==0){ /*no listening socket is available*/}
freeaddrinfo(res0);
}

Enabling Grids for E-sciencE

Introduction to
IPv6 Programming

EGEE-III INFSO-RI-222667 43

IPv6 Programming
In Perl

Enabling Grids for E-sciencE

Perl for IPv6

An IPv6 function-set for the perl language is provided by the Socket6 module.
Like the Socket core module for IPv4, this module provides a C-Style set of
functions to open and manipulate sockets in IPv6. The general structure of the
module and the address data structures are similar to the C programming
interface.

Developers should take care of the same general concepts described in

EGEE-III INFSO-RI-222667 44

Developers should take care of the same general concepts described in
section about introduction programming IPv6 in C.

The module is available on the CPAN web site. To work properly, the module
must be included in the code in conjunction to the core module Socket.

use Socket
Use Socket6

Enabling Grids for E-sciencE

Function list (1/6)

BINARY_ADDRESS = inet_pton (FAMILY, TEXT_ADDRESS)

This function converts string format IPv4/IPv6 addresses to binary format, the
FAMILY argument specify the type of address (AF_INET or AF_INET6).

TEXT_ADDRESS = inet_ntop (FAMILY, BINARY_ADDRESS)

EGEE-III INFSO-RI-222667 45

This function converts an address in binary format to string format; like for the
previous function (inet_pton), the FAMILY argument must be used to specify
the family type of the address.

$a=inet_ntop(AF_INET6,inet_pton(AF_INET6,"::1"));
print $a; //print ::1

example

Enabling Grids for E-sciencE

Function list (2/6)

STRUCT_ADDR = pack_sockaddr_in6 (PORT, ADDRESS)

This function returns a sockaddr_in6 structure filled with PORT and ADDRESS
arguments in the correct fields. The ADDRESS argument is a 16-byte structure
(as returned by inet_pton). The other fields of the structure are not set.

(PORT,STRUCT_ADDR) = unpack_sockaddr_in6 (ADDR)

This function unpacks a sockaddr_in6 structure to an array of two elements,

EGEE-III INFSO-RI-222667 46

This function unpacks a sockaddr_in6 structure to an array of two elements,
where the first element is the port number and the second element is the
address included in the structure.

$lh6=inet_pton(AF_INET6,"::1");
$p_saddr6=pack_sockaddr_in6(80,$lh6);
($port,$host) = unpack_sockaddr_in6($p_saddr6);
print inet_ntop(AF_INET6,$host); //print ::1
print $port; //print 80

example

Enabling Grids for E-sciencE

pack_sockaddr_in6_all (PORT, FLOWINFO, ADDRESS, SCOPEID)

This function returns a sockaddr_in6 structure filled with the four specified
arguments.

This function unpacks a sockaddr_in6 structure to an array of four element:

unpack_sockaddr_in6_all (NAME)

Function list (3/6)

EGEE-III INFSO-RI-222667 47

This function unpacks a sockaddr_in6 structure to an array of four element:

- The port number
- Flow informations
- IPv6 network address (16-byte format)
- The scope of the address

Enabling Grids for E-sciencE

This function converts node names to addresses and service names to port
numbers. At least one of NODENAME and SERVICENAME must have a true
value. If the lookup is successful this function returns an array of information
blocks. Each information block consists of five elements: address family,
socket type, protocol, address and canonical name if specified.
The arguments in squared brackets are optional.

getaddrinfo(NODENAME,SERVICENAME,[FAMILY,SOCKTYPE,PROTOCOL,FLAGS])

Function list (4/6)

EGEE-III INFSO-RI-222667 48

The arguments in squared brackets are optional.

getnameinfo (NAME, [FLAGS])

This function returns a node or a service name. The optional attribute FLAGS
controls what kind of lookup is performed.

Enabling Grids for E-sciencE

Example

use Socket;
use Socket6;
@res = getaddrinfo('hishost.com', 'daytime', AF_UNSPEC,SOCK_STREAM);
$family = -1;
while (scalar(@res) >= 5) {
($family, $socktype, $proto, $saddr, $canonname, @res)=@res;
($host, $port) =getnameinfo($saddr,NI_NUMERICHOST|NI_NUMERICSERV);
print STDERR "Trying to connect to $host port $port...\n";

EGEE-III INFSO-RI-222667 49

socket(Socket_Handle, $family, $socktype, $proto) || next;
connect(Socket_Handle, $saddr) && last;
close(Socket_Handle);
$family = -1;

}

if ($family != -1) {
print STDERR "connected to $host port port $port\n";

} else {
die "connect attempt failed\n";

}

Enabling Grids for E-sciencE

Example

use Socket; use Socket6; use IO::Handle; $family = -1;

@res = getaddrinfo('www.kame.net', 'http', AF_UNSPEC, SOCK_STREAM);
while (scalar(@res) >= 5) {
($family, $socktype, $proto, $saddr, $canonname, @res) = @res;
($host,$port) = getnameinfo($saddr,NI_NUMERICHOST|NI_NUMERICSERV);
print STDERR "Trying to connect to $host port $port...\n";

EGEE-III INFSO-RI-222667 50

socket(Socket_Handle, $family, $socktype, $proto) || next;

connect(Socket_Handle, $saddr) && last;
close(Socket_Handle); $family = -1;

}

if ($family != -1) { Socket_Handle->autoflush();
print Socket_Handle "GET\n";
print STDERR "connected to $host port port $port\n";
while($str=<Socket_Handle>){print STDERR $str;}

}else {die "connect attempt failed\n";}

Enabling Grids for E-sciencE

Example output

Trying to connect to 2001:200:0:8002:203:47ff:fea5:3085 port 80 …
connected to 2001:200:0:8002:203:47ff:fea5:3085 port 80

[…]<title>The KAME project</title>[…] The KAME project […]
 […]

Example output

EGEE-III INFSO-RI-222667 51

Trying to connect to 2001:200:0:8002:203:47ff:fea5:3085 port 80 …

Trying to connect to orange.kame.net port www …

(…)=getnameinfo($saddr,NI_NUMERICHOST|NI_NUMERICSERV);
print STDERR "Trying to connect to $host port $port…";

(…)=getnameinfo($saddr,0);
print STDERR "Trying to connect to $host port $port…";

OUTPUT:

OUTPUT:

Example output

Enabling Grids for E-sciencE

gai_strerror (ERROR_NUMBER)

This function returns a string corresponding to the error number passed in as

gethostbyname2 (HOSTNAME, FAMILY)

This function is the multiprotocol implementation of gethostbyname; the
address family is selected by the FAMILY attribute. This function converts node
names to addresses.

Function list (5/6)

EGEE-III INFSO-RI-222667 52

This function returns the 16-octet wildcard address.

in6addr_any

This function returns the 16-octet loopback address.

in6add_loopback

This function returns a string corresponding to the error number passed in as
an argument.

Enabling Grids for E-sciencE

This function takes either a node name or an IP address string and performs a
lookup on that name (or conversion of the string). It returns a list of five
elements: the canonical host name, the address family, the length in octets of
the IP addresses returned, a reference to a list of IP address structures, and a
reference to a list of aliases for the host name. This function was deprecated
in RFC3493. The getnameinfo function should be used instead.

getipnodebyname (HOST, [FAMILY, FLAGS])

Function list (6/6)

EGEE-III INFSO-RI-222667 53

in RFC3493. The getnameinfo function should be used instead.

This function takes an IP address family and an IP address structure and
performs a reverse lookup on that address. This function was deprecated in
RFC3493: the getaddrinfo function should be used instead.

getipnodebyaddr (FAMILY, ADDRESS)

Enabling Grids for E-sciencE

IPv6 Programming
in Python in 2 slides:

just a few hints

EGEE-III INFSO-RI-222667 54

just a few hints

Enabling Grids for E-sciencE

Python and IPv6

• Python supports IPv6 since v2.3 on Linux/Solaris
• Key IPv6 functions are similar to C:

– getnameinfo, getaddrinfo
• Drawbacks of using Python for IPv6:

– Most of any existing networking code needs modifications in
order to be IPv6 compliant. However these modifications are

EGEE-III INFSO-RI-222667 55

easy.
– There is no IPV6_V6ONLY symbol defined in Python (yet).

You have to define it manually.

Enabling Grids for E-sciencE

main python IPv4/IPv6 functions
Purpose of the function call function

Get the list of addresses to
listen on getaddrinfo()

Create the server socket
socket()

Bind the server socket
bind()

Purpose of the function call
function

Return the list of addresses to
connect to the server host

getaddrinfo()

EGEE-III INFSO-RI-222667 56

bind()

Listen on the server socket
listen()

Choose if the IPv6 socket
should accept IPv4
connections or not

setsockopt(...,
IPV6_V6ONLY
, ...)

Accept a client connection
accept()

Create the client socket socket()

Get a character string
representing an IP address

getnameinfo (...,
NI_NUMERICHOST)

Connect to the server connect()

Enabling Grids for E-sciencE

Introduction to
IPv6 Programming

EGEE-III INFSO-RI-222667 57

IPv6 Programming
In Java

Enabling Grids for E-sciencE

IPv6 and Java (1/3)

• Java APIs are already IPv4/IPv6 compliant.

• IPv6 support in Java is available since
– 1.4.0 in Solaris and Linux machines
– 1.5.0 for Windows XP and 2003 server.

• IPv6 support in Java is implicit and transparent.

EGEE-III INFSO-RI-222667 58

• Indeed no source (nor bytecode!) code change are necessary.

• Every Java application is already IPv6 enabled if:
– It does not use hard-coded addresses (no direct references to IPv4

literal addresses);
– All the address or socket information is encapsulated in the Java

Networking API;
– Through setting system properties, address type and/or socket type

preferences can be set;
– It does not use non-specific functions in the address translation.

Enabling Grids for E-sciencE

• IPv4-mapped address has a meaning only at
implementation of a dual-protocol stack and it is
never returned
– The corresponding plain IPv4 address is returned instead

• For new applications IPv6-specific new classes and
APIs can be used.

IPv6 and Java (2/3)

EGEE-III INFSO-RI-222667 59

APIs can be used.

Enabling Grids for E-sciencE

IPv6 and JAVA (3/3):
advantages and drawbacks

• Advantage: Most of any existing networking code is already
IPv6 compliant.

• Advantage: The sample Java code is shorter because
some important functionality is handled by the Java
environment itself in a transparent way.

• Drawback: The parameter /proc/sys/net/ipv6/bindv6only

EGEE-III INFSO-RI-222667 60

• Drawback: The parameter /proc/sys/net/ipv6/bindv6only
must be set to 0 on the OS where the programs are run.
Otherwise:
– A server will not accept IPv4 clients
– A client will fail to connect to an IPv4 server (it will say “Network

is unreachable”!)
This is reported in the Java bug database.

Enabling Grids for E-sciencE

Java code example (server):
the same lines of code for IPv4 and IPv6

import java.io.*;
import java.net.*;

ServerSocket serverSock = null;
Socket cs = null;

try {

•Based on the ServerSocket class

EGEE-III INFSO-RI-222667 61

serverSock = new ServerSocket(5000);
cs = serverSock.accept();
BufferedOutputStream b = new

BufferedOutputStream(cs.getOutputStream());
PrintStream os = new PrintStream(b,false);
os.println(“hallo!”); os.println("Stop");

cs.close();
os.close();
}catch (Exception e) {[...]}

Enabling Grids for E-sciencE

Java code example (client):
the same lines of code for IPv4 and IPv6

import java.io.*;
import java.net.*;

Socket s = null; DataInputStream is = null;

try {
s = new Socket("localhost", 5000);
is new DataInputStream(s getInputStream())

•Based on the Socket class

EGEE-III INFSO-RI-222667 62

is = new DataInputStream(s.getInputStream());
String line;
while((line=is.readLine())!=null) {
System.out.println("received: " + line);
if (line.equals("Stop")) break;

}
is.close();
s.close();

}catch (IOException e) { […] }

Enabling Grids for E-sciencE

The InetAddress class

• This class represents an IP address.
It provides:
– address storage.
– name-address translation methods.
– address conversion methods.

EGEE-III INFSO-RI-222667 63

– address testing methods.

Enabling Grids for E-sciencE

Inet4Address and Inet6Address

In J2SE 1.4, the InetAddress has been extended to support both IPv4 and
IPv6 addresses.

Utility methods are added to check address types and scopes.

public final class Inet4Address extends InetAddress
public final class Inet6Address extends InetAddress

EGEE-III INFSO-RI-222667 64

Inet6AddressInet4Address

InetAddress

Enabling Grids for E-sciencE

Inet4Address and Inet6Address

• The two types of addresses, IPv4 and IPv6, can be
distinguished by the Java class type Inet4Address and
Inet6Address.

• V4 and V6 specific state and behaviors are implemented
in these two subclasses.

• Due to Java's object-oriented nature, an application
normally only needs to deal with the InetAddress
class—through polymorphism it will get the correct

EGEE-III INFSO-RI-222667 65

class—through polymorphism it will get the correct
behavior.

• Only when it needs to access protocol-family-specific
behaviors, such as in calling an IPv6-only method, or
when it cares to know the class types of the IP address,
it has to become aware of the Inet4Address and
Inet6Address classes.

Enabling Grids for E-sciencE

Returns the local host.

public static InetAddress getLocalHost()
throws UnknownHostException

the InetAddress class

public static InetAddress getByName(String host)
throws UnknownHostException

EGEE-III INFSO-RI-222667 66

Determines the IP address of a host, given the host's name.

throws UnknownHostException

Enabling Grids for E-sciencE

Returns the raw IP address of this InetAddress object. The result is in network
byte order: the highest order byte of the address is in getAddress()[0].

public byte[] getAddress()

InetAddress addr=InetAddress.getLocalHost();
byte[] b=addr.getAddress();
for(int i: b){System.out.print(i+" ");} Output:

127 0 0 1

the InetAddress class

EGEE-III INFSO-RI-222667 67

Returns an InetAddress object given the raw IP address . The argument is in
network byte order: the highest order byte of the address is in
getAddress()[0].

This method doesn't block, i.e. no reverse name service lookup is performed.

IPv4 address byte array must be 4 bytes long and IPv6 byte array must be
16 bytes long

public static InetAddress getByAddress(byte[] addr)
throws UnknownHostException

Enabling Grids for E-sciencE

Given the name of a host, returns an array of its IP addresses, based on the
configured name service on the system.

public static InetAddress[] getAllByName(String host)
throws UnknownHostException

for (InetAddress ia : InetAddress getAllByName("www kame net")) {

the InetAddress class

EGEE-III INFSO-RI-222667 68

for (InetAddress ia : InetAddress.getAllByName("www.kame.net")) {
System.out.println(ia);

}
output:
www.kame.net/203.178.141.194
www.kame.net/2001:200:0:8002:203:47ff:fea5:3085

Enabling Grids for E-sciencE

Gets the fully qualified domain name for this IP address.
Best effort method, meaning we may not be able to return the FQDN
depending on the underlying system configuration.

public String getCanonicalHostName()

System.out.println(
InetAddress.getByName("www.garr.it").getCanonicalHostName()

);
output:

the InetAddress class

EGEE-III INFSO-RI-222667 69

output:
lx1.dir.garr.it

Returns the IP address string in textual presentation.

public String getHostAddress()

addr = InetAddress.getByName("www.garr.it");
System.out.println(addr.getHostAddress());

output:
193.206.158.2

Enabling Grids for E-sciencE

Gets the host name for this IP address.

If this InetAddress was created with a host name, this host name will be
remembered and returned; otherwise, a reverse name lookup will be
performed and the result will be returned based on the system configured
name lookup service.

public String getHostName()

S t t i t(

the InetAddress class

EGEE-III INFSO-RI-222667 70

System.out.print(
InetAddress.getByName("www.garr.it").getHostName()

);
output:

www.garr.it

System.out.print(
InetAddress.getByName("193.206.158.2").getHostName()

);
output:

lx1.dir.garr.it

Enabling Grids for E-sciencE

Test whether that address is reachable. A typical implementation will use
ICMP ECHO REQUESTs if the privilege can be obtained, otherwise it will try
to establish a TCP connection on port 7 (Echo) of the destination host.

public boolean isReachable(int timeout)
throws IOException

public boolean isReachable(NetworkInterface netif,int ttl,int
timeout)

throws IOException

the InetAddress class

EGEE-III INFSO-RI-222667 71

to establish a TCP connection on port 7 (Echo) of the destination host.

netif - the NetworkInterface through which the test will be done, or null for any
interface
ttl - the maximum numbers of hops to try or 0 for the default
timeout - the time, in milliseconds, before the call aborts

A negative value for the ttl will result in an IllegalArgumentException being
thrown. The timeout value, in milliseconds, indicates the maximum amount of
time the try should take. If the operation times out before getting an answer,
the host is deemed unreachable. A negative value will result in an
IllegalArgumentException being thrown.

Enabling Grids for E-sciencE

InetAddress Example

InetAddress ia=InetAddress.getByName("www.garr.it");
//or
InetAddress ia=InetAddress.getByName(“[::1]"); //or "::1"

String host_name = ia.getHostName();
System.out.println(host_name); // ip6-localhost

String addr ia getHostAddress()

EGEE-III INFSO-RI-222667 72

String addr=ia.getHostAddress();
System.out.println(addr); //print IP ADDRESS

InetAddress[] alladr=ia.getAllByName("www.kame.net");
for(int i=0;i<alladr.length;i++) {

System.out.println(alladr[i]); }
Output:
www.kame.net/203.178.141.194
www.kame.net/2001:200:0:8002:203:47ff:fea5:3085

Enabling Grids for E-sciencE

New metods

InetAddress.isAnyLocalAddress()
InetAddress.isLoopbackAddress()
InetAddress.isLinkLocalAddress()
InetAddress.isSiteLocalAddress()
InetAddress.isMCGlobal()
InetAddress.isMCNodeLocal()

To the InetAddress class new metods have been added:

EGEE-III INFSO-RI-222667 73

InetAddress.isMCLinkLocal()
InetAddress.isMCSiteLocal()
InetAddress.isMCOrgLocal()
InetAddress.getCanonicalHostName()
InetAddress.getByAddr()

Inet6Address.isIPv4CompatibleAddress()

Inet6Address has one further metod w.r.t. Inet4Address:

Enabling Grids for E-sciencE

Comprehensive Example
(networkInt.java)

Enumeration netInter = NetworkInterface.getNetworkInterfaces();
while (netInter.hasMoreElements())
{
NetworkInterface ni = (NetworkInterface)netInter.nextElement();
System.out.println("Net. Int. : "+ ni.getDisplayName());
Enumeration addrs = ni.getInetAddresses();
while (addrs.hasMoreElements())
{
Object o = addrs.nextElement();
if (o.getClass() == InetAddress.class ||

o.getClass() == Inet4Address.class ||

EGEE-III INFSO-RI-222667 74

g ||
o.getClass() == Inet6Address.class)

{
InetAddress iaddr = (InetAddress) o;
System.out.println(iaddr.getCanonicalHostName());
System.out.print("addr type: ");
if(o.getClass() == Inet4Address.class) {…println("IPv4");}
if(o.getClass() == Inet6Address.class){…println("IPv6");}
System.out.println("IP: " + iaddr.getHostAddress());
System.out.println("Loopback? "+iaddr.isLoopbackAddress());
System.out.println("SiteLocal?"+iaddr.isSiteLocalAddress());
System.out.println("LinkLocal?"+iaddr.isLinkLocalAddress());

}
}

}

Enabling Grids for E-sciencE

Comprehensive Example: output

Net. Int. : eth0

CanonicalHostName: fe80:0:0:0:212:79ff:fe67:683d%2
addr type: IPv6 IP: fe80:0:0:0:212:79ff:fe67:683d%2
Loopback? False SiteLocal? False LinkLocal? true

CanonicalHostName: 2001:760:40ec:0:212:79ff:fe67:683d%2
addr type: IPv6 IP: 2001:760:40ec:0:212:79ff:fe67:683d%2
Loopback? False SiteLocal? False LinkLocal? false

CanonicalHostName pcgarr20 dir garr it

EGEE-III INFSO-RI-222667 75

CanonicalHostName: pcgarr20.dir.garr.it
addr type: IPv4 IP: 193.206.158.140
Loopback? False SiteLocal? False LinkLocal? false

Net. Int. : lo

CanonicalHostName: ip6-localhost
addr type: IPv6 IP: 0:0:0:0:0:0:0:1%1
Loopback? True SiteLocal? False LinkLocal? false

CanonicalHostName: localhost
addr type: IPv4 IP: 127.0.0.1
Loopback? True SiteLocal? False LinkLocal? false

Enabling Grids for E-sciencE

IPv6 Networking Properties: preferIPv4Stack

If IPv6 is available on the operating system, the underlying native socket
will be an IPv6 socket. This allows JAVA applications to connect to, and
accept connections from, both IPv4 andIPv6 hosts.

If an application has a preference to only use IPv4 sockets, then this

java.net.preferIPv4Stack (default: false)

EGEE-III INFSO-RI-222667 76

If an application has a preference to only use IPv4 sockets, then this
property can be set to true. The implication is that the application will
not be able to communicate with IPv6 hosts.

Enabling Grids for E-sciencE

java.net.preferIPv4Stack Example (1/3)

$ java networkInt

Net. Int. : eth0

CanonicalHostName: fe80:0:0:0:212:79ff:fe67:683d%2
IP: fe80:0:0:0:212:79ff:fe67:683d%2

CanonicalHostName: 2001:760:40ec:0:212:79ff:fe67:683d%2
IP: 2001:760:40ec:0:212:79ff:fe67:683d%2

EGEE-III INFSO-RI-222667 77

CanonicalHostName: pcgarr20.dir.garr.it
IP: 193.206.158.140

Net. Int. : lo

CanonicalHostName: ip6-localhost
IP: 0:0:0:0:0:0:0:1%1

CanonicalHostName: localhost
IP: 127.0.0.1

Enabling Grids for E-sciencE

$ java -Djava.net.preferIPv4Stack=true networkInt

Net. Int. : eth0

CanonicalHostName: pcgarr20.dir.garr.it
IP: 193.206.158.140

Net. Int. : lo

java.net.preferIPv4Stack Example (2/3)

EGEE-III INFSO-RI-222667 78

Net. Int. : lo

CanonicalHostName: localhost
IP: 127.0.0.1

Enabling Grids for E-sciencE

$ java -Djava.net.preferIPv4Stack=true networkInt

java.net.preferIPv4Stack Example (3/3)

To configure java.net.preferIPv4Stack it is possible to use the “-D” option
while launching the application

… or configure this property directly in the code:

EGEE-III INFSO-RI-222667 79

System.setProperty("java.net.preferIPv4Stack","true");

Properties p = new Properties(System.getProperties());
p.setProperty("java.net.preferIPv6Addresses", "true");
System.setProperties(p);

Enabling Grids for E-sciencE

IPv6 Networking Properties:
preferIPv6Addresses

If IPv6 is available on the OS, the default preference is to prefer an IPv4-
mapped address over an IPv6 address.

This is for backward compatibility reasons—for example, applications that
depend on access to an IPv4-only service, or applications that depend on the

java.net.preferIPv6Addresses (default: false)

EGEE-III INFSO-RI-222667 80

depend on access to an IPv4-only service, or applications that depend on the
%d.%d.%d.%d representation of an IP address.

This property can be set to change the preferences to use IPv6 addresses
over IPv4 addresses.

This allows applications to be tested and deployed in environments where the
application is expected to connect to IPv6 services.

Enabling Grids for E-sciencE

//System.setProperty("java.net.preferIPv6Addresses",“false");
InetAddress ia=InetAddress.getByName("www.kame.net");
String ss=ia.getHostAddress();
System.out.println(ss); //print 203.178.141.194

System.setProperty("java.net.preferIPv6Addresses","true");
InetAddress ia=InetAddress.getByName("www.kame.net");
String ss ia getHostAddress();

java.net.preferIPv6Addresses Example

EGEE-III INFSO-RI-222667 81

String ss=ia.getHostAddress();
System.out.println(ss);//print 2001:200:0:8002:203:47ff:fea5:3085

$java -Djava.net.preferIPv6Addresses=true -jar test.jar
2001:200:0:8002:203:47ff:fea5:3085

$java -Djava.net.preferIPv6Addresses=false -jar test.jar
203.178.141.194
$java -jar test.jar
203.178.141.194

Enabling Grids for E-sciencE

High level programming libraries

EGEE-III INFSO-RI-222667 82

High level programming libraries

Enabling Grids for E-sciencE

Summary

• Goal
• High-level Python
• High-level Perl

EGEE-III INFSO-RI-222667 83

• High-level Perl
• High-level C/C++
• Other High-level techniques

83

Enabling Grids for E-sciencE

Goal

• High-level code is shorter
• High-level code is easier to read
• High-level code is not affected (or little) by

EGEE-III INFSO-RI-222667 84

changes in the low-level API, like the
changes required now to support IPv6.

84

Enabling Grids for E-sciencE

High-Level Python

• High-level networking libraries exist in Python, but they
have several drawbacks.

• An example: the class ThreadingTCPServer
– Simple usage:

…
ThreadingTCPServer.address_family = socket.AF_INET6
server = ThreadingTCPServer(("", port), <handler>)

EGEE-III INFSO-RI-222667 8585

– We see that:
This class is IPv4-only by default, so we have to indicate the IPv6
address family.
Therefore our code is not address-family independent (and will fail
if IPv6 is not available on the operating system).
The class does not cover all IPv6 aspects: the IPV6_V6ONLY
option should be unset in order to allow IPv4 connection to the IPv6
server socket.

server.serve_forever()

Enabling Grids for E-sciencE

High-Level Python

– Advanced usage:
It is possible to create a sub-class of ThreadingTCPServer which
will solve these three problems.
The code should then use this sub-class instead of
ThreadingTCPServer.
See the report on IPv6 programming with C/C++, Perl, Python and
Java at https://edms.cern.ch/document/971407 for more
information.

EGEE-III INFSO-RI-222667 8686

information.

Enabling Grids for E-sciencE

High-Level Perl

• High-level networking libraries exist in Perl, but most of
them are not IPv6 compliant.

• The most famous high-level IPv6 compliant library is
IO::Socket::INET6.
– This library currently provides very interesting functionality in

mixed IPv4 and IPv6 environments.

EGEE-III INFSO-RI-222667 8787

– But according to the README file of the package, the library will
surely become IPv6-only in the future. If this happens, then using
this library in a mixed IPv4 and IPv6 environment will be at least
very inefficient, if not impossible.

Enabling Grids for E-sciencE

High-Level C/C++

• The new boost::asio library (available since boost 1.35)
may be used in an IPv6 compliant way.
– For clients, refer to the “Synchronous TCP daytime client”

sample code of the boost::asio tutorial which is IPv6 compliant.
– For servers, the only subtle point is to avoid the constructor of

tcp::acceptor which automatically opens, binds and listens,
because we need to set the IPV6_V6ONLY socket option to 0;

EGEE-III INFSO-RI-222667 8888

because we need to set the IPV6_V6ONLY socket option to 0;
and setting this option can only be done after the 'open' and
before the ‘bind'.
How to set this socket option with boost:
acceptor.set_option(ip::v6_only(false));

• For more information see the report at
https://edms.cern.ch/document/935729

Enabling Grids for E-sciencE

Other High-Level Techniques

• For a socket server with basic TCP functionality, it is
possible to build an xinetd-based service:
– Xinetd will handle the low-level networking code itself.
– Xinetd can handle IPv6 compliance of a service by just adding

the option “flags=IPv6” in the file
/etc/xinetd.d/<service_name>.
In this case xinetd will create an IPv6 socket which will accept

EGEE-III INFSO-RI-222667 8989

In this case xinetd will create an IPv6 socket which will accept
both IPv4 and IPv6 connections.

