

Will the Machine Protection System Let LHC Safely Operate?

Roberto Filippini LHC Machine Protection System Review CERN, 11-13 April 2005

Introduction

• Aims of the presentation

- Safety of the Machine Protection System (MPS)
 - Probability and equivalent failure rate of the system
- Unavailability of the MPS
 - Number of machine fills aborted due to surveillance within the MPS

• Topics of the presentation

- MPS modeling aspects

- Functional architecture and the studied MPS
- MPS attributes and design facilities

- System analysis

- Methodology
- Results for safety and unavailability
- Some sensitivity analyses
- Concluding remarks

Roberto Filippini CERN AB-BT

Modeling Aspects MPS Tasks and Attributes

• The MPS task is to receive and execute:

- <u>Planned dump requests</u> from the control room.
- <u>Unforeseen dump requests</u> due to:
 - Detected beam losses in the LHC.
 - Detected failures in the MPS itself (FALSE DUMPS).
 - Other interlocked systems.
- The MPS dependability attributes of interest are:
 - **Safety:** the MPS must be available at request, resulting in a correct execution, and if fails it must fail safely with an operation abort.
 - Unavailability due to false dumps: it affects the LHC exploitation.

Safety and unavailability are a trade-off : The safer the system the higher the unavailability

System Analysis Followed Methodology

• STEP 1: Separate analysis <u>of each system</u> in the MPS:

- Functional architecture and design facilities: redundancy, surveillance and diagnostics ("post mortem").
- Reliability prediction at component level.
- Failure Modes Effects and Criticalities Analysis (FMECA).
- Calculations of unsafety and unavailability (due to false dumps) under identical assumptions.

• STEP 2: Arrange results <u>in the MPS</u> model:

- Dump requests apportionment.
 - The systems demanded at a dump request depend on the type of dump request.
 - <u>Cross-redundancy</u> ⇒ possibility to cover the same event by means of two or more systems in the MPS.
- Results \Rightarrow Unsafety and unavailability (due to false dumps) per year.

System Analysis The MPS Model for Safety Calculation

- **Dump requests** are apportioned per year of operation •
- **Cross-redundancy** exists for the beam losses ٠
 - It is internal to the BLM and between the BLM and the QPS _
- Perfect coverage by BLM system was assumed: All critical failures are assumed to lead • to a beam loss [S. Redaelli, "Beam Losses versus BLM locations at the LHC"]

System Analysis Assumptions and Results

Operational scenario

200 days/year of operations, 400 beam operations (10h each) followed by checks (2h each)

Diagnostics effectiveness

LBDS and BIC "as good as new" after checks (BLM, partially) QPS and PIC "as good as new" after periodic inspection or power abort

Dump request apportionment

60% planned dumps

15% fast beam losses

15% slow beam losses

10% others

Cross-Redundancy

No within the Beam Loss Monitors (worst-case) **NOTE**: Figures updated from J.Uythoven and R.Filippini, "Will we ever get the green light for beam operation?" Chamonix XIV LHC project workshop, CERN, Geneva 2005.

System Unsafety/year		False dumps/year		Analysis including	Not included
LBDS [RF]	1.4 ×10 ⁻⁷ (2X)	Average 2.6 (2X)	(+/-1.6)	(Re-)triggering system, MKD (MIL-217F) BET, BEM (assumptions)	MSD, Q4, MKB TDE
BIC [BT]	1.4 ×10 ⁻⁸	0.5	(+/-0.5)	User Boxes only (MIL-217F)	BIC core, VME and permit loops
BLM [GG]	1.7 ×10 ⁻³	4.8	(+/-2.1)	Single monitor plus VME electronics (MIL-217F, SPS data)	Design upgrades
PIC [MZ]	0.5 ×10 ⁻³	1.5	(+/-1.2)	Complete system (MIL-217F)	PLC
QPS [AV]	0.4 ×10 ⁻³	15.8	(+/-3.9)	Complete system (MIL-217F)	
OVERA	LL RESULTS fo	r the MPS			
MPS	2.6 ×10-4	27.8	(+/-11)		
Equiva	alent failure r	ate =		Unavailability due to	
0.65×1 SIL3 =	$10^{-7} / h \Longrightarrow SIL3$ $= [10^{-8}, 10^{-7}] / h$	is reache [IEC-6150	ed 08]	false dumps is 7%	

13/4/2005

Roberto Filippini CERN AB-BT

CERNY

Sensitivity Analysis Sensitivity to Dump Request Apportionment

Sensitivity Analysis Sensitivity to Cross-redundancy

• The parameter P stands for the probability a beam loss is detected with two monitors (connected to the same VME electronics). If we vary P then unsafety will change. Nothing happens for the false dumps.

Sensitivity Analysis Sensitivities to Other Parameters

- Sensitivity to diagnostics effectiveness.
 - Imperfect or no diagnostics means that the system is not recovered "as good as new" after the check.
- Sensitivities to beam operation length.
 - The longer runs delay checks and make the systems more prone to failure.
- **EXAMPLE**: The LHC Beam Dumping System.

Concluding Remarks Safety

- The probability the MPS will let LHC safely operate depends on the apportionment of dump requests and cross-redundancy.
 - For the assumed dump request apportionment the **<u>unsafety per year</u>** is:
 - 6.5×10^{-6} with 100% cross-redundancy within BLM which is **SIL4**.
 - 2.6×10^{-4} without cross-redundancy within BLM which is SIL3.
- Calculations were based on:
 - Simplified MPS with some systems needing further analysis.
 - Results refer only to safety with respect to beam losses and planned dump requests.
- Fast beam Losses are the main concern for safety.
 - Only beam loss monitors can cover a fast beam loss.
 - For an high rate of fast beam losses and lack of cross-redundancy the MPS is possible not anymore SIL3.
- Other systems, presently not included, add cross-redundancy for many dump requests:
 - Beam Current Transformer, Beam Position Monitors, Power converters, etc...

Concluding Remarks Unavailability Due to False Dumps

• The number of false dumps per year is 28 [+/-11] (on average).

- **7%** of all fills will be aborted due to a false dump.
- Results are independent from dump requests apportionment and cross-redundancy.

• Calculations were based on.

- About 3500 BLMs, 4000 channels for QPS, 36 PIC, 16 BIC and 2 LBDS.
- Availability of the LHC also depends on systems outside the MPS.

• Generally.

- Powering systems (power converters) cause the largest fraction of false dumps whose contribution might be overestimated.
 - More then 50% of the false dumps are expected to origin from the QPS. The effect of doubling the PC has been foreseen in the design of QPS: the expected number of false dumps would be halved.

Acknowledgements:

The Machine Protection Reliability Working Group