

Performance of Injection Protection Systems

V.Kain AB/CO

Contents

- •SPS Extraction Transfer LHC Injection
- •Injection Protection System Principle
- Passive Protection
- Interlocking
- Simulations for Protection Level
 Conclusions

Input from B. Goddard, R. Genand, R. Schmidt, J. Wenninger, M. Werner

SPS Extraction - Transfer -LHC Injection

Verena Kain, AB-CO

Injection Process

To define the Injection Protection System, SPS Extraction, Transfer and LHC Injection must be treated together.

TDI...injection stopper in injection region

BEAM2: LSS4/TT40 – TI 8 – IR 8

Injection/Extraction Constraints

Full nominal injected LHC batch: 3.3x10¹³p⁺, 450 GeV

Holes in Cu : 450 GeV p⁺ beam (from 2004 TT40 materials test)

 $5.3x10^{12}p^{+} = 1/6$ of full batch

Damage limit: ~2x10¹²p⁺, **~5 % of injected batch**

Small Aperture:

- $7.5\sigma\,LHC$ aperture at 450GeV
- Tight aperture in transfer line (MSI injection septum ~7 σ)

What can go wrong: magnet trips, kicker failures, wrong settings...

- Magnet trips can move trajectory by many σ in short time (MSE extraction septum: 40σ in 1ms)
- Kicker erratics missings timing etc

•	Operator error Corrupted settings	Injection PSlow failures: 10σ in > 2-3ms: relying on interlockiFast failures: 10σ in < 2-3ms: interlocking + collinUltra-fast failures: 10σ in few µs: collimators	rocess ing mators
	4/12/2005	Verena Kain, AB-CO	5

Principle of Machine Protection for Injection Process

Avoidance

Procedures to avoid dangerous situations

e.g. never inject high intensity beam in empty LHC

Beam Presence Flag \rightarrow protects against many failures

4/12/2005

Passive Protection for fast and ultra-fast failures

- Protection of LHC aperture and MSI injection septum aperture:
 - TCDI collimators for failures upstream of injection regions
 - "generic" protection system with full phase coverage
- Dedicated collimators for kicker failures:
 - MKI (LHC) failure: TDI beam stopper + TCLI collimators are 90° downstream
 - MKE (SPS) failure: TPSG diluter is 90° downstream
- No dedicated collimators for septum failures
 - Protection from MSE and MSI failures \Rightarrow interlocking

TCDI Transfer Line Collimators

- Close to LHC and injection septum (last 300m matching section of TLs)
- Robust, based on LHC collimator design (1.2m C jaw)
- + FLUKA model of 300m of TI 8 \Rightarrow local shield for each TCDI
- 3 collimators / plane (0-60-120°)
- Setting: 4.5 σ , tolerances: \le 1.4 σ
- 2 motors/ jaw (angular control)
- Protection level 6.9 σ: result from comprehensive Monte-Carlo simulation including all imperfections: β beat, mismatch from SPS, tolerances,...

TDI injection stopper, TCLI collimators

- TDI injection stopper:
 - Protect LHC (especially D1) against MKI kicker failures
 - 90° downstream of the MKI ~4m long hBN+Al+Cu jaws
 - local protection of SC LHC magnet D1 with mask -> TCDD (1m, Cu)
- Auxiliary collimators TCLIs
 - For MKI-TDI phase advance ≠90°, and for flexibility (halo load...)
 - At nx180°±20° from TDI (1.2m long C jaws)

Overview, vertical plane: functionality of TDI injection stopper

TDI - TCDD - TCLI

Topview

4/12/2005

Verena Kain, AB-CO

10

Interlocking for Extraction – Transfer -Injection

- Segmented Interlocking System, different possible operational modes in a safe way
 - e.g. Extraction without injection, IF TED (transfer line beam stopper) in the beam
- Without "LHC injection permit" NO "SPS extraction permit"
- Beam Presence condition for high intensity injection
- Safe Beam Flag: "maskable" interlock signals are ignored

Interlocking System: linking injection with extraction

Verena Kain, AB-CO

Protection level simulations to quantify system performance

Safe LHC injection \Rightarrow losses on aperture below 5% damage limit during injection

- Extensive tracking simulations to check performance
- MKI kicker failure scanned with injection absorber setting
- Full Monte Carlo of single and grouped failures at injection
 - 14 magnet and kicker families (SPS extraction, Transfer Line, LHC injection) for LSS4 - TI 8 - IR8
 - Full TL + LHC injection region aperture model (~3 km)
 - All imperfections and errors included

4/12/2005

Verena Kain, AB-CO

- TDI, TCLI collimator setting of $6.8\sigma,~to~guarantee~max.~5\%$ above 7.5σ
- Increasing collimator opening increases risk of damage

Single failure tracking Monte Carlo results (1000 seeds per failure)

Family	Tolerable error [∆k/k₀]	required reaction time [ms]	Covered by	
			LHC	TL
MPLH (LSS4 bumper)	0.185	201.0	TCDI	PCS
MKE (LSS4 kicker)	0.125	-	TCDI	-
MSE (LSS4 septum, τ =23ms)	0.005	0.1	TCDI	FCCM
MBHC (TT40 H bend)	0.005	5.1	TCDI	FCCM
MBHA (TT40 H bend)	0.012	31.47	TCDI	PCS
MBI (main TI 8 bends)	0.003	2.7	TCDI	FCCM
MCIBH (start TI 8 H bend)	0.630	389.0	TCDI	PCS
MBIAH (end TI 8 H bend)	0.003	7.9	FCCM	FCCM
MBIBV (end TI 8 V bend)	0.003	43.4	PCS	PCS
3MCIAV (end TI 8 V bend)	0.183	98.43	PCS	TCDI
MSI (LHC injection septum)	0.0035	3.5	FCCM	n/a

- PCS = standard Power Convertor Surveillance (≥3ms)
- FCCM = Fast Current Change Monitor, dedicated new system

CERN

Grouped Failures: Powering Scheme for Extraction - Transfer - Injection (beam2)

Grouped Failures

Grouped failure tracking Monte Carlo results (1000 seeds per failure)

Group	Tolerable time after switch-off [ms]	Covered by		
		LHC	TL	
A	1.3	TCDI	FCCM on MBHC	
			(0.1% tolerable error)	
В	0.1	TCDI	FCCM on MSE	
С	15.8	TCDI	PCS	
D	3.5-5.8, > 20	FCCM on MSI	TCDI/PCS	
E	4.0-5.4, > 20	FCCM on MBIAH, MSI	FCCM on MBIAH	
			(0.15% tolerable error)	

- In some cases grouped failures can be ~ 5 times worse than single failures
 - e. g. MBHC
- Grouped failures covered with protection for single failures BUT: requires increased performance

Discussion of results

- Fast magnet Current Change Monitor (FCCM) is required
 - Specification: $\Delta I/I=0.1\%$, reaction time ~50 μs
- With FCCM at the MSI injection septum LHC protection looks OK
- Transfer Line (TL): FCCMs are proposed for MSE, MBI, MBIAH, MBHC
 - MKE extraction kicker faults can still cause damage to the TL... possible solutions being studied.
- All other single failures are covered for Transfer Line & LHC
 - Transfer Line collimation system (TCDI) gives full protection from upstream failures
 - Failures at end of line: slow enough for normal power converter surveillance or FCCM
- Grouped Failures: can be ~ 5times faster than single failures
 - Covering single failures also covers grouped failures
 - But needs increased surveillance system performance

Fast Current Change Monitor for MSE extraction septum

FCCM tested for MSE by M. Werner from DESY this month

FCCM measures changes of magnet voltage: no comparison with reference value

- Managed to detect $\Delta I/I < 0.3\%$, reaction time < 50 μs
 - larger ripple on test-bench MSE power supply than real circuit (0.17% instead of 0.04%)
- Looks promising, needs to be finalized

Conclusions

- Tracking simulations extensively used to define protection systems and to determine protection levels
 - Quantitative results ⇒ requirements identified, specification of surveillance performance
 - LHC "fully protected" with foreseen active and passive protection
 - + Require Fast Current Change Monitor to measure 0.1% ΔI , ~50 μs reaction time
 - FCCM Development (M. Werner) looks promising even for fast extraction septum
 - Appropriate interlocking system has been specified
 - At present the protection systems cannot fully exclude TL damage
 - · alternative solutions are being studied
- Simulations for total power cut and combined failures (protection device failure + other failure) will be carried out