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SPS Extraction – Transfer –
LHC Injection

Beam 2

Beam 1



Injection Process
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TED…beam stopper in transfer line
TDI…injection stopper in injection region

To define the Injection Protection System, SPS 
Extraction, Transfer and LHC Injection must be treated
together.

SPS:
MSE…extraction septum
MKE…extraction kicker

LHC:
MSI…injection septum
MKI…injection kicker

BEAM2: LSS4/TT40 – TI 8 – IR 8
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Injection/Extraction Constraints

Inside, damage visible over ~1m (melted steel)

8x1012p+ = ¼ of full batch

Holes in Cu : 450 GeV p+ beam
(from 2004 TT40 materials test)

5.3x1012p+ = 1/6 of full batch

• Damage limit:
~2x1012p+, ~5 % of injected batch

• Small Aperture:
– 7.5σ LHC aperture at 450GeV
– Tight aperture in transfer line 

(MSI injection septum ~7σ)

Full nominal injected LHC batch:  3.3x1013p+, 450 GeV
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What can go wrong: magnet trips, 
kicker failures, wrong settings…

• Magnet trips can move trajectory by many σ in short time 
(MSE extraction septum: 40σ in 1ms)

• Kicker erratics, missings, timing etc.
• Operator error
• Corrupted settings

10 cm
~25cm long hole in QTRF chamber

Extraction septum (MSE) trip during high intensity extraction, Oct 2004

Slow failures:
10σ in > 2-3ms: relying on interlocking

Fast failures:
10σ in < 2-3ms: interlocking + collimators

Ultra-fast failures:
10σ in few μs: collimators

Injection Process
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Principle of Machine Protection 
for Injection Process

Protection
HW surveillance:
PCS, FCCM, 
settings 
monitoring,
equipment status
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Avoidance
Procedures to avoid dangerous situations
e.g. never inject high intensity beam in empty LHC

Beam Presence Flag → protects against many failures



4/12/2005 Verena Kain, AB-CO 7

Passive Protection for fast 
and ultra-fast failures

• Protection of LHC aperture and MSI injection 
septum aperture: 
– TCDI collimators for failures upstream of injection regions
– “generic” protection system with full phase coverage

• Dedicated collimators for kicker failures:
– MKI (LHC) failure: TDI beam stopper + TCLI collimators 

are 90° downstream 
– MKE (SPS) failure: TPSG diluter is 90° downstream 

• No dedicated collimators for septum failures
– Protection from MSE and MSI failures ⇒ interlocking
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TCDI Transfer Line Collimators
• Close to LHC and injection septum (last 300m matching section of TLs)

• Robust, based on LHC collimator design (1.2m C jaw)

• FLUKA model of 300m of TI 8 ⇒ local shield for each TCDI

x’

x

0-60-120 degree 
collimators

60o120o

LHC aperture
to protect at
7.5 σ

amax
6.9 σ

• 3 collimators / plane (0-60-120°)

• Setting: 4.5σ, tolerances: ≤1.4 σ

• 2 motors/ jaw (angular control)

• Protection level 6.9 σ: result 
from comprehensive  Monte-
Carlo simulation including all 
imperfections: β beat, mismatch 
from SPS, tolerances,…

6σ
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TDI injection stopper, TCLI
collimators

• TDI injection stopper:
– Protect LHC (especially D1) against MKI kicker failures
– 90° downstream of the MKI ~4m long hBN+Al+Cu jaws
– local protection of SC LHC magnet D1 with mask -> TCDD (1m, Cu)

• Auxiliary collimators TCLIs  
– For MKI-TDI phase advance ≠90°, and for flexibility (halo load…)
– At nx180°±20° from TDI (1.2m long C jaws) 

MKI

Overview, vertical plane: functionality of TDI injection stopper

orbit
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TDI
MKI +90˚

TCDD

TCLIB
TDI +340˚

TCLIA
TDI +200˚

Kicker
MKI

LEFT OF IP2

RIGHT OF IP2 TCLIM

TDI – TCDD - TCLI

Topview
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Interlocking for 
Extraction – Transfer -Injection

• Segmented Interlocking System, different possible 
operational modes in a safe way
– e.g. Extraction without injection, IF TED (transfer line beam 

stopper) in the beam

• Without “LHC injection permit” NO “SPS extraction 
permit”

• Beam Presence condition for high intensity injection

• Safe Beam Flag: “maskable” interlock signals are 
ignored 
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Interlocking System: linking 
injection with extraction
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Protection level simulations to 
quantify system performance

• Extensive tracking simulations to check 
performance

• MKI kicker failure scanned with injection 
absorber setting

• Full Monte Carlo of single and grouped
failures at injection
– 14 magnet and kicker families (SPS extraction, 

Transfer Line, LHC injection) for LSS4 - TI 8 – IR8
– Full TL + LHC injection region aperture model (~3 km)
– All imperfections and errors included

Safe LHC injection ⇒ losses on aperture below 5% damage limit during injection
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Injection kicker failure simulation results

• TDI, TCLI  collimator setting of 6.8σ,  to guarantee max. 5% above 7.5σ

• Increasing collimator opening increases risk of damage

N/N0 of particles with amplitudes >7.5 σy

6.8 σ
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Single failure tracking Monte Carlo 
results (1000 seeds per failure)
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Family Covered by 

• PCS = standard Power Convertor Surveillance (≥3ms)
• FCCM = Fast  Current Change Monitor, dedicated new system



Grouped Failures: Powering Scheme for 
Extraction – Transfer – Injection (beam2)
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Grouped failure tracking Monte Carlo 
results (1000 seeds per failure)

FCCM on MBIAH
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• In some cases grouped failures can be ~ 5 times worse than
single failures

• e. g. MBHC
• Grouped failures covered with protection for single failures 
BUT: requires increased performance
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Discussion of results
• Fast magnet Current Change Monitor (FCCM) is required

– Specification: ΔI/I=0.1%, reaction time ~50μs

• With FCCM at the MSI injection septum LHC protection looks OK
• Transfer Line (TL): FCCMs are proposed for MSE, MBI, MBIAH, 

MBHC
– MKE extraction kicker faults can still cause damage to the TL… possible 

solutions being studied.

• All other single failures are covered for Transfer Line & LHC
– Transfer Line collimation system (TCDI) gives full protection from 

upstream failures
– Failures at end of line: slow enough for normal power converter 

surveillance or FCCM

• Grouped Failures: can be ~ 5times faster than single failures
– Covering single failures also covers grouped failures
– But needs increased surveillance system performance
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Fast Current Change Monitor 
for MSE extraction septum 

• Managed to detect ΔI/I<0.3%,
reaction time < 50 μs
– larger ripple on test-bench 

MSE power supply than real 
circuit  (0.17% instead of 
0.04%)

• Looks promising, needs to be 
finalized

FCCM tested for MSE 
by M. Werner from DESY this month FCCM

MSE test-bench

FCCM measures changes of magnet
voltage: no comparison with reference 
value

FCCM
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Conclusions

• Tracking simulations extensively used to define protection systems 
and to determine protection levels
– Quantitative results ⇒ requirements identified, specification of

surveillance performance  

– LHC “fully protected” with foreseen active and passive protection
• Require Fast Current Change Monitor to measure 0.1% ΔI, ~50μs reaction 

time
• FCCM Development (M. Werner) looks promising even for fast extraction 

septum
• Appropriate interlocking system has been specified

– At present the protection systems cannot fully exclude TL damage
• alternative solutions are being studied

• Simulations for total power cut and combined failures (protection 
device failure + other failure) will be carried out


