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56 An Introduction to the LHC

Brief description (what and where)

Some details of the machine layout

m Arcs
m Insertions
m Dispersion suppressors

Injectors and transfer lines

A look at the LHC operational cycle
Performance goals and associated parameters
Commissioning strategy
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Description

m Superconducting accelerator and collider in the LEP tunnel

m LEP
= Constructed 1984-89
= Operated 1989-2000
= Dismantled 2001/2002
m LHC
= Civil engineering and preparation of tunnel 1998-2005
= Installation 2004-6
= Commissioning 2007

= Luminosity goal 10°* cm=2 s
s Excludes proton — antiproton in one beam pipe

m Hence proton — proton machine
= Separate magnetic fields and vacuum chambers in the arcs
= Common sections in the interaction regions
= lon-ion collisions also possible
m Tunnel cross section excludes 2 separate rings of magnets
= Hence twin aperture magnets in the arcs
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B2 Quadrupole magnet cross section
LHC quadrupole cross section
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LHC dipoles (1232 of them)
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m And plenty more magnets besides ...

Magnet Type Description Number of Magnets [f| Magnet Type Description Number of Magnets
MB Main Dipole Coldmass 1232 MO 4 Octupole Lattice Corrector in Arc

MBAW Alice Spectrometer (Muon Dipole) Short Straight Section

MBLW LHC-b Spectrometer 1 MQ Lattice Quadrupole in the Arc

MBRB Twin Aperture Separation Dipole (194 mm) D4 MQM Insertion Region Quadrupole 3.4 m

MBRC Twin Aperture Separation Dipole (188 mm) D2 MQMC Insertion Region Quadrupole 2.4m

MBRS Single Aperture Separation Dipole D3 MQML Insertion Region Quadrupole 4.8 m

MBW Twin Aperture Warm Dipole Module D3 and D4 in IR3 and IR7 MQS Skew Quadrupole Lattice Corrector in Arc Short Straight Section
MBWMD Single Aperture Warm Dipole Module Compensating MQSX Skew Quadrupole Q3

Alice Spectrometer MQT Tuning Quadrupole Corrector in Arc Short Straight Section

MBX Single Aperture Separation Dipole D1 MQTLH (MQTL Half Shell Type)

MBXW Single Aperture Warm Dipole Module D1 in IR and IR3 d MQTLI (MQTL Inertia Tube Type)

MBXWH Single Aperture Warm Horizontal Dipole Module Compensating MQWA Twin Aperture Warm Quadrupole Module in IR3 and IR7.

LHC-b Spectrometer Asymmetrical FD or DF

MBXWS Single Aperture Warm Horizontal Dipole Short Module MQWB Twin Aperture Warm Quadrupole Module in IR3 and IR7.
MBXWT Single aperture warm compensator for ALICE Symmetrical FF or DD

MCBCH Orbit Corrector in MCBCA(B.C.D) MQXA Single Aperture Triplet Quadrupole (Q1. Q3)

MCBCV Orbit Corrector in MCBCA(B.C.D) MQXB Single Aperture Triplet Quadrupole (Q2)

MCBH Arc Orbit Corrector in MSCBA(B.C.D). Horizontal MQY Insertion Region Wide Aperture Quadrupole 3.4 m.

MCBV Arc Orbit Corrector in MSCBA(B,C.D), Vertical 7 MS i Arc Sextupole Lattice Corrector Associated to MCBH or MCBV in
MCBWH Single Aperture Warm Orbit Horizontal Corrector MSCBA, MSCBB, MSCBC and MSCBD

MCBWV Single Aperture Warm Orbit Verticall Corrector MSDA Ejection dump septum, Module A

MCBXH Horizontal Orbit Corrector in MCBX(A) 4 MSDB Ejection dump septum. Module B

MCBXV Vertical Orbit Carrector in MCBX(A) ' MSDC Ejection dump septum, Module C

MCBYH Orbit Corrector in MCBYA(B) ' MSIA Injection septum, Module A

MCBYV Orbit Corrector in MCBYA(B) ! MSIB Injection septum, Module B

MCD ) Decapole Corrector in MCDO, (Spool Piece Corrector) MSS Arc skew Sextupole Corrector Associated to MCBH

MCO 4 Octupole Corrector in MCDO, (Spool Piece Corrector) in MSCBC and MSCBD

MCOSX < Skew Octupole Spool-Piece Associated to MQSX in MQSXA
MCOX 4 Octupole Spool-Piece Associated to MQSXA

MCS ) Sextupole Corrector, (Spool Piece Corrector)

MCSSX ) Skew Sextupole Spool-Piece Associated to MQSX in MQSXA
MCSX ) Sextupole Spool-Piece Associated to MCBXA

MCTX Dodecapole Spool-Piece Associated to MCBXA

MKA Tune kicker

MEKD Ejection dump kicker

MKI Injection kicker

MKQ Kicker For Q And Aperture Measurement
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And plenty of power circuits ...
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‘”’ | Geographical situation
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*m LEP and LHC underground structures
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tm Layout schematic
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The arcs

[ [] E 3
B 3 E []
MQT: trim quadrupole / MCS: spool piece sextupole

MOQS: skew trim quadrupocle PC DO spool piece octupole + decapole
MO lattice octupole

MSCB: sextupole (skew sextupole) + aorbit corrector

m 23 regular cells in each arc
s 106.9m long, made from two 53.45m long half-cells

= Half cell
m 3 15m cryodipole magnets, each with spool-piece correctors

s 1 Short Straight Section (~6m long)
= Quadrupole and lattice corrector magnets
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Dispersion suppressors

Q10

MER I'u'IG'ML MBA

Standard arc cells with missing dipole magnet and individually
powered quadrupoles
= Threefold function
adapt the LHC reference orbit to the geometry of the LEP tunnel

cancel the horizontal dispersion arising in the arc and generated
by the separation / recombination dipole magnets and the crossing
angle bumps

help in matching the insertion optics to the periodic solution of the
arc
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IR1 (ATLAS)
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ATLAS experiment (high luminosity)
Symmetrical around IP (right side shown)
Single bore low B triplet assembly

Single bore dipole D1
Double bore superconducting dipole D2
4 matching quadrupoles Q4 to Q7
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\TOTEM

IRS (CMS and TOTEM)

m CMS experiment (high luminosity) and TOTEM

s Basically the same layout as IR1
Symmetrical around IP (right side shown)
Single bore low B triplet assembly
Single bore dipole D1
Double bore superconducting dipole D2
4 matching quadrupoles Q4 to Q7
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Injection into matching section left of IP
D2 and D1 both superconducting
ALICE experiment (ions)

Flexible optics to control luminosity
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Injection into matching section right of IP
D2 and D1 both superconducting

LHCDb experiment (CP violation in B decays)
Flexible optics to control luminosity
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= Double bore

= Double bore

Longitudinal position [m]
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s Double bore dipoles D4 and D3

= Double bore guads Q5 and Q4

Longitudinal position [m]
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Symmetrical around IP (right side shown)
Double bore superconducting dipoles D4 and D3
400MHz accelerating system

m For capture, acceleration and store
m 2 *4-cavity cryogenic modules per beam

200MHz capture system (staged)
m For injected bunches with longitudinal emittance > 1eV.s
m Design done, space reserved for possible later installation
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October 2004
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T18 schematic
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*m LHC Operational cycle
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Phases of LHC operation
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Injection plateau

Pre-injection tasks

Injection @ 450GeV

m Establish injection
conditions
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Ramp (with snapback)
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Physics @ 7/TeV
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B8l Performance goals

= Nearly all these parameters are variable
Number of particles per bunch N
Number of bunches per beam Kk,
Relativistic factor (E/m) /4
Normalised emittance g,
Beta function at the IP B
Crossing angle factor =
= Full crossing angle 0
= Bunch length 0.
m Transverse beam size at the IP o
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Parameters for 1034 cm=2 s

Nominal Parameters

Beam energy (TeV)

7.0

Number of particles per bunch

TR

Number of bunches per beam

Crossing angle (urad)

285

Bunch length (cm)

7.55

Nomalised transverse emittance (um rad)

3.75

Beta function at IP 1, 2, 5, 8 (m)

0.55,10,0.55,10

Related parameters

Luminosity inIP1 &5 (cm?s™)

Luminosity in IP 2 & 8 (cm™? s™1)

Transverse beam size at IP 1 & 5 (um)

Transverse beam size at IP 2 & 8 (um)

Stored energy per beam (MJ)
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Filling
scheme
requires 12
SPS cycles
per beam

Crossing
angle
needed

LHC (1-RING) = 88.924 ps

3-batch

/N

SPS = 7/27 LHC

|
1
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]
0
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PACK AN burch
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Bunch Train Pattern
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Filling Scheme

3564 =
2x (72b + 8e) + 30e + 3x(72b + 8e) + 30e + 4x (72b + 8e) +
3x { 2x [ 3x (72b + 8e) + 30e] + 4x (72b + 8e) + 31e } + 80e

Beam Gaps

T, = 12 bunch gap in the PS (72 bunches on h=84)
T, = 8 missing bunches (SPS Injection Kicker Rise time = 225n:
T, = 38 missing bunches (LHC Injection Kicker Rise Time = 0.9
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IS a lot of beam energy to handle
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So how to get there ?

s Reduce total current to reduce stored beam energy

= Lower i,
= Fewer bunches (we have 25ns 50ns 75ns spacing available)

m Higher " to avoid problems in the (later part of) the squeeze

m Reduce energy to get more margin
= Against transient beam losses
= Against magnet operating close to training limit

Both machine and experiments will have to learn how to stand
running at nominal intensities

An early aim Is to find a balance between robust operation and
satisfying the experiments

m Maximize integrated luminosity

s Minimize event pile-up (to event + 2)
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Other considerations

s Electron cloud ( LHC simulations and SPS experience )
m |, <35% nominal for 25ns spacing
= |, ~nominal for > 50ns

= With In mind, two machine systems will be
staged

m Only 8 of 20 beam dump dilution kickers initially installed
= Total beam intensity < 50% nominal
= Install the rest when needed

m Collimators (robustness, impedance and other issues )
= Phased approach Collimator

= Run at the impedance limit during phase |
m Lower currents
= Higher §°

*  ovred oy ma Fls cem
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Proposal for early proton running

Phase | collimators and partial beam dump

(in) m

-
<O

—_

Stored beam energy [MJ]

<
=

No parasitic bunch crossings

Machine de-bugging no crossing angle
43 bunches, unsqueezed, low intensity Saammomenur [k
Push performance (156 bunches, partial squeeze, higher intensity.

M S5ppS
LEPZ2 m

10 100 1000 10000

Establish multi-bunch operation
Relaxed machine parameters (squeeze and crossing angle)
Push squeeze and crossing angle

Needs scrubbing for higher intensities (i, >3 10%9)
Phase Il collimators and full beam dump
= Push towards nominal performance
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Stage 1 — pilot run luminosities

NO squeeze to start

_ NzkbfyF

L *
Are. B

43 bunches per beam (some displaced in one beam for LHCDb)

Around 10*° per bunch
Push one or all of

m 156 bunches per beam (some displaced in one beam for LHCDb)

m Partial optics squeeze

m Increase bunch intensity

Beam energy (TeV)

6.0, 6.5 or 7.0

6.0, 6.5 or 7.0

6.0, 6.5 0r 7.0

Number of bunches per beam

43

43

156

B*in IP 1, 2, 5, 8 (M)

18,10,18,10

2,10,2,10

2,10,2,10
0)

Crossing Angle (urad)

0]

0)

Transverse emittance (um rad)

Bunch spacing (us)

Bunch Intensity

Luminosity IP 1 & 5 (cm=—=2 s1)

Luminosity IP 2 (cm= s1)
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Stage 2 — 75ns luminosities

Partial squeeze and smaller crossing angle to start
Luminosity tuning, limited by event pileup
Establish routine operation in this mode

Move to nominal sqgueeze and crossing angle
Increase bunch intensity ?

Tune IP2 and IP8 to meet experimental needs
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Stage 3 — 25ns luminosities

Production physics running
Start with bunch intensities below electron cloud threshold
> Scrubbing run (1-2 weeks)
Increase bunch intensities to beam dump & collimator limit
> Install beam dump kickers
> Install phase Il collimators
Increase bunch intensities towards nominal
Tune IP2 and IP8 to meet experimental needs

Beam energy (TeV)

6.0, 6.5 or 7.0

2
L N kbfZ/F
Are. B

L ong shutdown (6months)

6.0, 6.5 0or 7.0

7.0

Number of bunches per beam

2808

2808

2808

B*inIP 1, 2, 5, 8 (M)

0.55,10,0.55,10

0.55,10,0.55,10

0.55,10,0.55,10

Crossing Angle (urad)

285

285

285

Transverse emittance (um rad)

3.75

3.75

3.75

Bunch Intensity

3 10%°

5 10%°

1.15 1011

Luminosity IP 1 & 5 (cm= s1)

~ 7 1022

— 2 1033

1034

Luminosity IP 2 & 8 (cm=2 s1)

~ 4 1031

~ 1 10%?
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TOTEM luminosities

m Total Cross Section and Elastic scattering
s Diffraction and minimum bias

s Characterized by
m Several 1 day runs per year (starting early)
m Some single beam runs
s 43 and 156 bunches per beam
IP5 " = 1540m
= [P5pB"=18m

Cuminosity 1P e 5%
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ION luminosities

s ALICE request short run “after the first long shutdown”
m First runs with “early ion scheme”
= Move to nominal when possible

Nominal

Beam energy / nucleon (TeV) 2.76

Number of bunches (per beam) 592
B* in IP 2 (M) 1 0.5
Crossing Angle (urad) 0

Transverse emittance (um rad) : 1.5

Bunch spacing (us)

Bunch Intensity

Luminosity in 1IP2 (cm-=2 s1)
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Summary

LHC is a large and complicated machine
Performance goals are very demanding
Damage potential is

Staged approach towards nominal parameters
s Reduced complexity

s More robust operation

s Damage potential Is

Machine protection system mandatory

s Needed from day 1 + not many
= A few low intensity bunches at injection are OK
s Everything else is dangerous

m Has to be commissioned as an integral part of the machine
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