# Beam Dumping System – Failure Scenarios Brennan Goddard, CERN AB/BT

- How the dump system can fail
- Catalogue of primary failures
- Failure classes and protection
- Specific failures cases
  - -Dilution failure (missing)
  - -Extraction kicker erratic
  - -Extraction kicker missing
  - -Injection / dump "single turn deadlock"
- Spares policy issues

With R.Filippini, J.Uythoven, E.Carlier, V.Mertens, V.Kain, L.Ducimetiere, L.Bruno, W.Weterings, R.Assmann et al.



### Dump system – functional blocks



# Failures, protection and consequences



### Primary failure scenarios

| Catagory      | Drimory foilure cooperie                            | Main protection                                                                                |           | Other protection |                                                                         | LHC         | SIL reqd.  |
|---------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|-----------|------------------|-------------------------------------------------------------------------|-------------|------------|
| Category      | Primary failure scenario                            | Interlock                                                                                      | Passive   | Interlock        | Passive                                                                 | consequence | on failure |
|               |                                                     |                                                                                                |           |                  |                                                                         |             |            |
| System status | Mobile C diluter position out of tolerance          | Position                                                                                       |           | TCS BLMs         |                                                                         |             |            |
| System status | Dump block entrance window failure                  | TD vacuum                                                                                      |           | LHC vacuum       |                                                                         |             |            |
| System status | Dump line vacuum failure                            | TD vacuum                                                                                      |           | LHC vacuum       |                                                                         |             |            |
| System status | Extraction kicker system status bad                 | Surveillance                                                                                   |           | BETS             |                                                                         |             |            |
| System status | Dilution kicker system status bad                   | Surveillance                                                                                   |           | BETS             |                                                                         |             |            |
| System status | Dump block vessel N2 pressure low                   | Pressure                                                                                       |           |                  |                                                                         |             |            |
| Beam          | Beam emittance out of tolerance                     | TCS BLMs                                                                                       |           |                  |                                                                         |             |            |
| Beam          | Beam position out of tolerance                      | BPMs                                                                                           |           | TCS BLMs         |                                                                         |             |            |
| Powering      | Q4 quadrupole power supply trip                     | PIC                                                                                            |           | FCCM/BETS        |                                                                         |             |            |
| Powering      | Q4 quadrupole field out of tolerance                | BETS                                                                                           |           |                  |                                                                         |             |            |
| Powering      | Extraction septum power supply trip                 | PIC                                                                                            |           | FCCM/BETS        |                                                                         |             |            |
| Powering      | Extraction septum current out of tolerance          | BETS                                                                                           |           |                  |                                                                         |             |            |
| Powering      | Extraction kicker charging voltage out of tolerance | BETS                                                                                           |           |                  |                                                                         |             |            |
| Powering      | General/local power cut of dump equipment           | UPS                                                                                            |           | BETS             |                                                                         |             |            |
| Abort gap     | RF frequency synchronisation signal lost            | Trigger unit PLL                                                                               |           |                  | TCDS/TCDQ                                                               |             |            |
| Abort gap     | Abort gap population out of tolerance               | Abort gap mon.                                                                                 | TCDS/TCDQ |                  | TCTs/LHC col.                                                           |             |            |
| Abort gap     | Synchronisation error                               |                                                                                                | TCDS/TCDQ |                  | TCTs/LHC col.                                                           | Quench      |            |
| Fast kicker   | Dilution kicker erratic (spurious) trigger          |                                                                                                |           |                  |                                                                         |             |            |
| Fast kicker   | <8 dilution kicker magnets missing                  |                                                                                                |           |                  |                                                                         |             |            |
| Fast kicker   | Extraction/Injection deadlock                       | а оптесстала и полтесстала и тал от состала и от тесстал от тал от                             | TCDS      |                  | 1001031031031000031031031000031031031000031031                          | Quench      |            |
| Fast kicker   | Extraction kicker erratic (spurious) trigger        | Retrigger                                                                                      | TCDS/TCDQ |                  | TCTs/LHC col.                                                           | Quench      |            |
| Fast kicker   | 1 extraction kicker magnet missing                  |                                                                                                |           |                  | 000 ET ET ET EN ET ET ET ET EN ET ET ET EN ET ET ET ET ET ET            | Quench      |            |
| Fast kicker   | ≥8 dilution kicker magnets missing                  |                                                                                                |           |                  |                                                                         | TDE damage  | SIL3       |
| Fast kicker   | ≥2 extraction kicker magnets missing                |                                                                                                |           |                  |                                                                         | LHC damage  | SIL3       |
| BETS          | Energy tracking error                               |                                                                                                |           |                  |                                                                         | LHC damage  | SIL3       |
| MPS           | No trigger received from Beam Interlock System      | 0 400333 EDOLEOCIDO 333 EDOLEOCIDO EDOLEOCIDO 200 EDOLEOCIDO 333 EDOLEOCIDO 333 EDOLEOCIDO 333 |           |                  | 5131 EOC EOC 8331 EOC EOC 8331 EOC EOC 9331 EOC EOC 9331 EOC EOC 9331 E | LHC damage  | SIL3       |
|               |                                                     |                                                                                                |           |                  |                                                                         |             |            |

# Failure classes

- 1. Should not happen in the LHC lifetime ("beyond design")
  - Not receiving trigger from Beam Interlock System after failure in LHC
  - Failure of beam energy tracking
  - < 14 / 15 extraction kickers</p>
  - < 3 / 10 dilution kickers</p>
- 2. Protected against by surveillance and interlocking (dump while conditions still ~ok) majority
  - Failures of general services (electricity, vacuum, cooling, Ethernet, ...)
  - Bad beam position (BPM, BLM)
  - Magnet powering failure (PIC, FCCM, BETS)
  - Large abort gap population
- 3. Cannot be prevented by surveillance (kicker faults associated with dump action)
  - a) Can be tolerated without damage
  - Missing extraction kicker magnet
  - Missing dilution kicker magnet
  - Erratic dilution kicker magnet
  - b) Cannot be tolerated: rely on passive protection devices
  - Extraction kicker erratic (spurious asynchronous trigger)
  - Single turn injection/dump deadlock

# **Dilution kicker failures**



Normal operation: sweep beam in 'e' shape over the face of the dump block 4xH and 6xV kicker magnets



## Dilution kickers failures : missing units



Shown for 450 GeV beam spot ( $\sigma \approx 6$  mm)

## Dilution kickers failures : missing units Energy deposition and $\Delta T$

| Maximum Energy Density [MJ/kg] |                            |      | Large amount of redundancy |      |      |      |                                   |  |  |  |
|--------------------------------|----------------------------|------|----------------------------|------|------|------|-----------------------------------|--|--|--|
|                                | Active horizontal diluters |      |                            |      |      |      |                                   |  |  |  |
|                                |                            | 4    | 3                          | 2    | 1    | 0    | Values quoted for LHC ultima      |  |  |  |
| š                              | 6                          | 1,96 | 2.32                       | 3.18 | 5.29 | 10.5 | (50% above the nominal)           |  |  |  |
| lute                           | 5                          | 2.2  | 2.45                       | 3.23 | 5.45 | 11.6 |                                   |  |  |  |
| al di                          | 4                          | 2.58 | 2.76                       | 3.39 | 5.64 | 13.1 |                                   |  |  |  |
| rtica                          | 3                          | 3.17 | 3.35                       | 3.74 | 5.89 | 15.3 |                                   |  |  |  |
| e ve                           | 2                          | 4.17 | 4.41                       | 4.8  | 6.36 | 18.7 | <br>Maximum Core Temperature IºCl |  |  |  |
| tive                           | 1                          | 5.81 | 6.41                       | 7.28 | 8.96 | 26.8 |                                   |  |  |  |
| Ă                              | 0                          | 10.2 | 11.9                       | 14.8 | 21   | 130  | Active nonzontal diluters         |  |  |  |

Values quoted for LHC ultimate (50% above the nominal)

Concern is total dilution failure:

- of either H or V leads to contained dump block damage (cracks)
- of both H and V leads to perforation of dump block & exit window.

| e 0                     |   |                            |      |      |      |           |  |  |  |  |
|-------------------------|---|----------------------------|------|------|------|-----------|--|--|--|--|
| 0.8                     |   | Active horizontal diluters |      |      |      |           |  |  |  |  |
| <u> </u>                |   | 4                          | 3    | 2    | 1    | 0         |  |  |  |  |
| ctive vertical diluters | 6 | 1241                       | 1420 | 1818 | 2761 | 3727      |  |  |  |  |
|                         | 5 | 1362                       | 1481 | 1839 | 2833 | 3727      |  |  |  |  |
|                         | 4 | 1545                       | 1624 | 1912 | 2915 | 3727      |  |  |  |  |
|                         | 3 | 1812                       | 1896 | 2071 | 3027 | 3727      |  |  |  |  |
|                         | 2 | 2262                       | 2369 | 2543 | 3235 | melt      |  |  |  |  |
|                         | 1 | 2993                       | 3258 | 3642 | 3727 | melt      |  |  |  |  |
| Ă                       | 0 | 3727                       | 3727 | melt | melt | Vepiolble |  |  |  |  |
|                         |   |                            |      |      |      |           |  |  |  |  |

# Extraction kicker failures : erratic (asynchronous dump)



- Retrigger remaining 14 kickers in ~700ns
  Crossed and redundant retrigger lines
- ~120 bunches swept across LHC aperture
  - Local collimators protect & limit excursions



### Asynchronous dump: elements at risk



- TCDS (intercepts ~40 bunches) protects the extraction septum
- TCDQ +TCS (~27 bunches) protect Q4 magnet, AND downstream LHC
  The latter implies precise (±0.5σ) positioning of the jaw WRT beam....

# Asynchronous dump : fixed septum collimator TCDS



# Asynchronous dump – protection and energy deposition

Instantaneous loads due to asynchronous dump at 7 TeV (ultimate beam)

| Peak                   | ∆ <b>T (K)</b> |      |  |
|------------------------|----------------|------|--|
| TCDS collimator        | 3121           | 1050 |  |
| MSD septum             | 160            | 96   |  |
| <b>TCDQ collimator</b> | 2139           | 712  |  |
| TCS collimator         | 2283           | 679  |  |
| TCDQM mask             | 45             | 13   |  |
| MCBY corrector         | 26             | 7    |  |
| MQY Q4                 | 38             | 10   |  |

- Q4 instantaneous damage limit = 87 J/cm<sup>3</sup>
- MSD design limit on  $\Delta T = 100 \ ^{\circ}C$
- Graphite / C-C melting point = 3700 °C
- C-C thermal shock checked



# Extraction kicker failures : missing unit



- At 450 GeV, worst case with 14/15 MKD gives ~2.7σ clearance at TCDS, or ~10<sup>12</sup> p+ on collimator (well below damage limit, but may cause quench)
- At 7 TeV, enough aperture (~10 $\sigma$ ) with 14/15 MKD to avoid losses on TCDS

# Special "failure" – injection / dump single turn deadlock

A potential problem....



#### Injection / dump single turn deadlock

- µs : Time to generate Injection Inhibit signal
- **65**  $\mu$ **s** : Time for signal to propagate 13 km from IR2 to IR6
- µs : Time for injection system to react to Injection Inhibit signal
- $\mu s$ : Time for injected batch to travel 13 km from IR2 to IR6
- $\mu$ s : Total (between beam dump trigger, and latest time an injected batch could arrive at the extraction kicker)



### Injection / dump single turn deadlock



288 bunches not correctly kicked, but either all extracted or (in worst case trajectory) impact extraction septum collimator TCDS.

 $\Rightarrow$  LHC is protected.

# "Beyond design" failures...

| Category    | Primory failure accontia                       | LHC         | Probability per year |            |
|-------------|------------------------------------------------|-------------|----------------------|------------|
|             | Primary failure scenario                       | consequence | assumed              | calculated |
|             |                                                |             |                      |            |
| Fast kicker | ≥8 dilution kicker magnets missing             | TDE damage  | 1E-03                | 1E-07      |
| Fast kicker | ≥2 extraction kicker magnets missing           | LHC damage  | 1E-03                | 1E-06      |
| BETS        | Energy tracking error                          | LHC damage  | 1E-03                | ?          |
| MPS         | No trigger received from Beam Interlock System | LHC damage  | 1E-03                | 3E-04      |
|             |                                                |             |                      |            |

### Track beam trajectory to determine elements at risk.

~straightforward in dump region: damage to extraction elements

(collimators, septa, dilution kickers) and Q4, Q5 machine elements.



# "Beyond design" failures and spares

- Total dilution failure: spare dump blocks exist
  - Will take some <u>days</u> to change the elements
  - Down-time probably dominated by cool-down, inquiry, system inspection, etc.

#### • 2-9 extraction kickers missing: TCDS and septa damaged / destroyed

- TCDS spares exist; for septa 3 spare magnets (1 per type) for 30 installed.
  Could damage 2-7 magnets (10-30m beam range) e.g. all 5 of type A.
- Rebuilding septa would presently take ~1-2 years. More spares? Alternatives?
- Some beam energy tracking failures: dilution kickers also at risk
  - 1 spare magnet per type (H/V). Rebuild ~1-2 years.
  - More spares? Low-tech, sacrificial absorber to protect magnets? Needs study
- Asynchronous dump + mobile TCDQ collimator position failure : damage triplet collimators TCTs
  - Presently only few (1?) spares foreseen. Foresee more? Tracking needed.
- Worst-cases: Interlock, dump system, energy tracking failures: quantify expected damage for common initiators (trips, quenches)
  - Tracking studies needed to determine loss locations

# Unexpected failures?

# Experienced one erratic in MKD kicker testing

- 30 kV high voltage, 2 µC capacity means ~1.5 kJ energy in the capacitors
- Not very much for the kicker magnet...

....but more than enough for the sparrow, which acted as an unorthodox switch to earth.

#### (nb series generators fully enclosed)

Serious message: this 'failure' in LHC would have lead to asynchronous dump  $\Rightarrow$  fault - tolerant design allows some unexpected failures to be survived



## Conclusions

#### Many possible failures for beam dumping system

- Analyses to date (and results from prototypes) have given confidence in chosen solutions
  - The identified failures are either safe for the LHC, or not expected to occur in LHC lifetime, or can be prevented with interlocking
- Some difficult aspects remain to be demonstrated
  - Safety of Beam Energy Tracking system (see next talk)
  - Positioning of mobile collimator TCDQ with respect to beam
- "Beyond-design" failures have serious consequences which could conceivably be ameliorated
  - Tracking studies needed to quantify extent of potential damage
  - Spares policy to re-examine, and/or other options to be studied (e.g. sacrificial absorbers), to reduce down-time for some cases