Geneva, 12 April 2005 LHC Machine Protection Review

Beam losses versus BLM locations at the LHC

R. Assmann, S. Redaelli, G. Robert-Demolaize

AB - ABP

Acknowledgements: B. Dehning

Motivation - Are the proposed BLM locations suitable for detecting slow beam losses at the LHC?

Design Philosophy for BLM locations

(see next talk by B. Dehning)

- 1. BLM at each collimator
- 2. BLM at each **quadrupole**
- 3. Additional special locations (e.g., dispersion suppressor and separation dipoles, ...)

- \rightarrow Where largest losses occur!
- \rightarrow Maximum β functions!
- \rightarrow Large dispersion, aperture restrictions...

- Goal of this study:
- Assess these design criteria with tracking results
 - Find if there are unexpected loss locations

Overview of my talk:

- **1. Slow losses from the collimators**
- 2. Simulation tools
- 3. Beam loss patterns
- 4. Conclusions

Mechanism to produce *slow losses* in a two-stage collimation system

Well tuned machine with collimators at nominal settings and a stable circulating beam. Beam proton diffuse outwards with a rate fixed by the beam lifetime (τ_b): $\frac{dN}{dt} = \frac{N_{\text{Nom.}}}{dt}$

Slow "regular" losses → No other aperture bottlenecks are hit before the primary collimators. (*no failures!*) Loss rate of beam protons in the cleaning insertion determined by the beam lifetime. Time scale: some seconds.

dt

Some secondary and tertiary halo particles escape from the cleaning insertion can be lost around in the ring!

- 1. Large betatron kicks
- 2. Large energy errors

Requires detailed tracking of particle's trajectories

Precise distribution of losses

Requires aperture model for the full ring

The appropriated **TOOLS** have been setup in the framework of the Accelerator Physics collimation studies (AB-ABP) to understand:

- · How many particles are lost?
- Where are they lost in the ring?

• How does the losses compare with the quench limits?

Main focus for this talk...

ABP collimation team:

R. Assmann S. Redaelli G. Robert-Demolaize

Tools for halo tracking and loss maps

The LHC aperture model

• Beam screen of all superconducting magnets (different size, tilts)

- Aperture of warm magnets
- BPM aperture
- Detector region aperture
- Linear interpolation for the transitions
- Kick of separation magnets (D1, D2, ...)

The aperture model includes

page 8

Calculation of the proton loss rate per unit length

$$\frac{dN}{dtds} = \frac{1}{ds} \frac{dN(ds)}{\tau_b} \frac{N_{\text{Nom.}}}{N_{\text{Abs.}}}$$

From aperture model From tracking *dN(ds)* : number of particles lost around the full ring

 N_{abs} : number of particles lost in the cleaning insertion $(dN(ds)/N_{abs})$ is the cleaning inefficiency!)

For *slow losses*, all the particles that drift out of the beam core interact first with the primary collimators:

$$\Rightarrow \frac{dN}{dt} \propto \frac{N_{\text{Nom.}}}{\tau_b} \frac{1}{N_{\text{Abs.}}}$$

Assumptions on:1. Total beam intensity \longrightarrow $N_{\text{Nom.}} = 3 \times 10^{14} \text{ p}$ 2. Beam lifetime \checkmark $\begin{cases} \tau_b^{\text{inj}} = 0.1 \text{ h} \\ \tau_b^{\text{top}} = 0.2 \text{ h} \end{cases}$ Quench limit of superconducting magnets: $R_{\text{Q}}^{\text{inj}} = 7 \times 10^8 \text{ p/m/s}$ $R_{\text{Q}}^{\text{top}} = 7.6 \times 10^6 \text{ p/m/s}$

S. Redaelli, LHC MPS Review

Performance of the collimation system → **Cleaning inefficiency**

$$\eta_c(A_0) = \frac{N_p(A > A_0)}{N_{\text{abs}}}$$

Particle leakage: fraction of particles that escape from the cleaning insertion

System designed to perform better at 7 TeV.

Loss maps at injection (450 GeV/c)

Loss maps at top energy (7 TeV/c)

Less losses at the quadrupoles: beam size smaller at 7 TeV/c!

Slow losses are easier to detect at the collimators!

Mandatory to have BLM's for EACH collimators, as foreseen.

Perfect machine/cleaning TCP (6 σ) and TCS (7 σ) only $N_{\rm Nom.} = 3 \times 10^{14} \text{ p}$ $\tau_{b}^{\rm top} = 0.2 \text{ h}$

Losses in the cold region - Injection energy (450 GeV/c)

S. Redaelli, LHC MPS Review

page 13

Losses in dispersion regions are expected because secondary halo particles can experience *large energy errors!*

> Energy distribution for protons impinging on a 50 cm Copper block

Energy errors due to single-diffractive scattering!

As expected, for all quadrupoles:

- Loss peaks at the warm/cold transition! (confirm simulations by R.Assmann, B.E. Holzer, V.Kain)
- Losses in the first half of the magnet (peak of β in the middle)

Transverse distributions of losses depend on the location!

Losses also further downstream of the arc 7-8!

Same longitudinal profile for the other MQ's

0 X[mm]

Losses at top energy - cold region

Same loss patterns as at injection

 10^{9}

However, in some locations longitudinal and transverse distribution of losses is different (betatron losses smaller, energy errors dominate!)

```
Perfect machine/cleaning
TCP (6\sigma) and TCS (7\sigma) only
         N_{\rm Nom.} = 3 \times 10^{14} \, {\rm p}
                    \tau_{\rm h}^{\rm top} = 0.2 \, {\rm h}
```


Losses at the superconducting triplets are induced by the large beta functions (> 4000m) and by the crossing schemes.

Tertiary collimators have been added to shield the triplets....

Conclusions

- Loss patterns around the full LHC ring can now be precisely calculated!
 Simulations: Tracking of particle halo trajectory and aperture model (Δs = 10 cm!)
 Preliminary results (primary and secondary collimators only, no absorbers)
- As expected: Largest losses arise in the cleaning insertions
 Large loss peaks at the quadrupoles (warm/cold transitions)
 Large losses at local aperture restrictions
- *However:* Losses at unforeseen locations (e.g., dipoles with high D_x)
 Longitudinal and transverse loss distributions change during energy ramping!
- ✓ Re-evaluation of the BLM location is in progresses!
- ✓ Errors must be studied in detail! Alignment, closed orbit, non-linear fields
- ✓ Failure scenarios other than regular 'slow' losses require dedicated studies

Reserve slides

Generation and tracking of halo particles

 \rightarrow Interaction with horizontal (vert) primary collimators

Amplitude of losses versus beta function values

Neglecting the contribution from dispersion, losses occur at the peak values of β !

Amplitude of losses versus dispersion values

For small values of β , the losses are driven by energy error (large D_x)!

Distribution of available LHC aperture at injection (450 GeV/c)

Distribution of available LHC aperture at top energy (7 TeV/c)

Preliminary beam losses with tertiary collimators to protect the triple:

No more losses at the triplets with tertiary collimators at 8.4 σ !