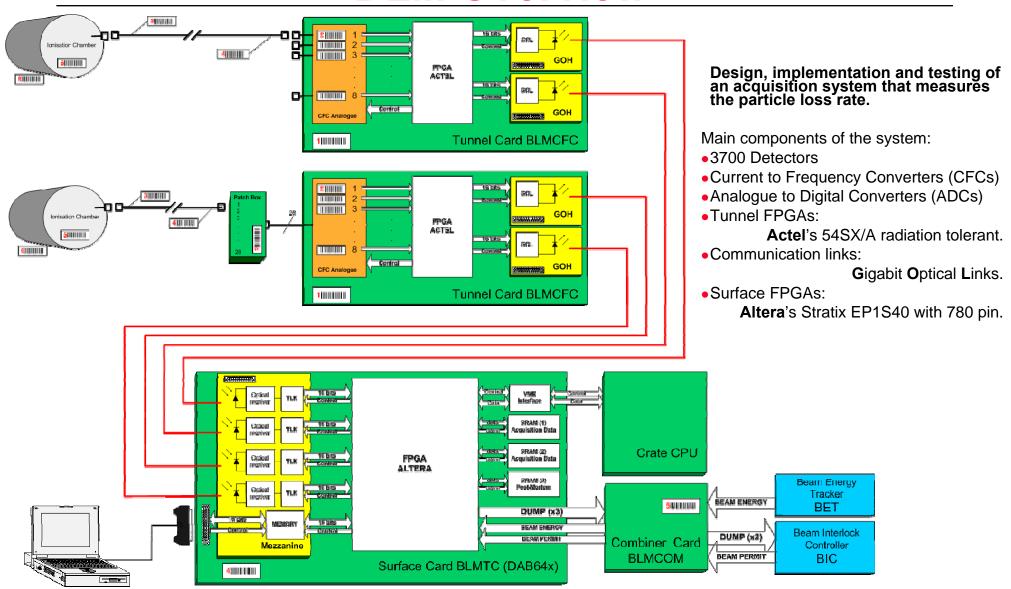
LHC Beam Loss Monitor Realisation

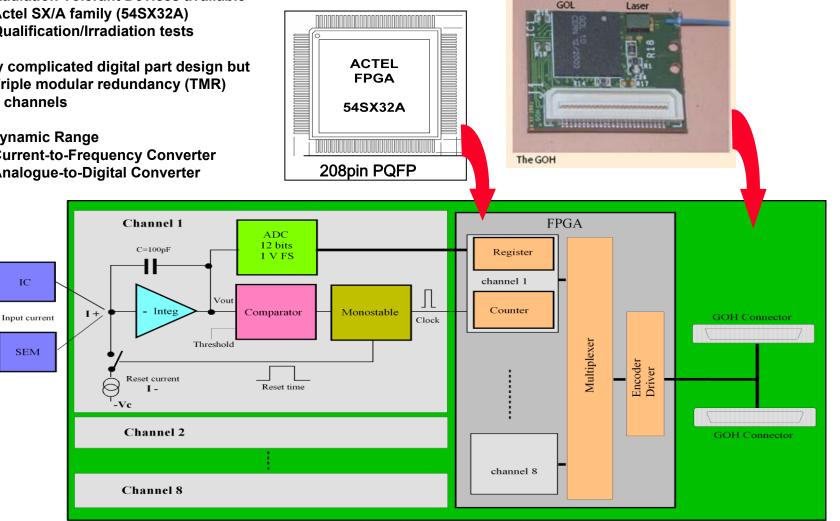

LHC Machine Protection System Review

Christos Zamantzas

LHC Beam Loss Monitor

- BLM Overview
- Tunnel
 - Tunnel Card (BLMCFC)
 - Frameword for Transmission
 - Failsafe Tunnel System
- Surface
 - Surface Card (BLMTC)
 - Transmission Check & Tunnel Status
 - Quench Level Thresholds
 - Real-Time Analysis of Data
 - Combiner Card (BLMCOM)
 - Failsafe Surface System
- Reliability Study

BLM Overview


Tunnel Card (BLMCFC)

Design Criteria Keypoints:

- **Radiation Environment**
 - **Radiation Tolerant Devices available**
 - Actel SX/A family (54SX32A)
 - **Qualification/Irradiation tests**
- Not very complicated digital part design but
 - Triple modular redundancy (TMR)
 - 8 channels .
- Large Dynamic Range

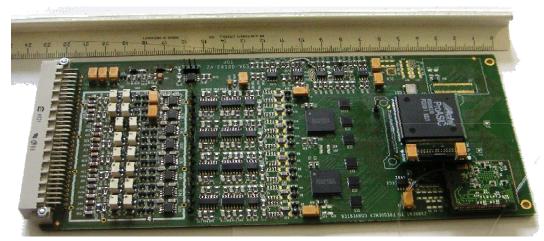
IC

- **Current-to-Frequency Converter**
- Analogue-to-Digital Converter

GOL

Tunnel Card's Design Choices

Basic components used:


Off-the-shelves

- Current-to-Frequency Converter (x8)
 - Irradiation tests at cyclotrons of Lauvain and PSI
- Actel FPGA (54SX32A) (x1)
 - 208 pin
 - 32,000 LE
 - One-time-programmable
 - Redundant Inputs
 - Triple counter inputs
 - Redundant outputs
 - Double 16bit data bus
 - Double 4bit control bus

CERN Custom ASICs

- A/D Converter AD74240 CMOS (x2)
 - Quad 12bit
 - 40Ms/s
 - Parallel output
- Line Driver LVDS_RX CMOS (x6)
 - 8 LVDS to CMOS line receivers
- Temperature Sensor DCU2 (x1)
 - 12 bit output
- GOL (Gigabit Optical Link) (x2)
 - Analogue parts needed to drive the laser.
 - Algorithm running that corrects SEU.
 - 8b/10b encoding.
 - 16 or 32 bit input.
 - Error reporting (SEU, loss of synchronisation,..)

Figure: CFC card top view.

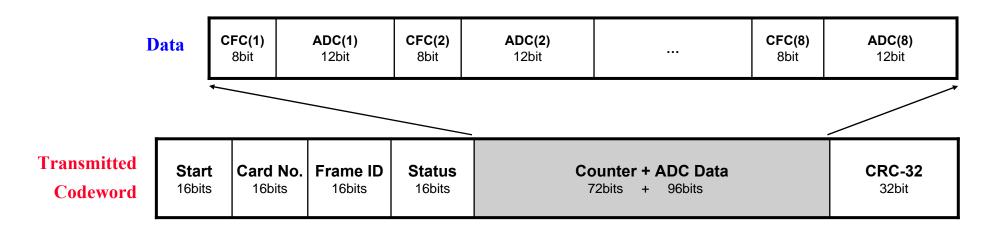
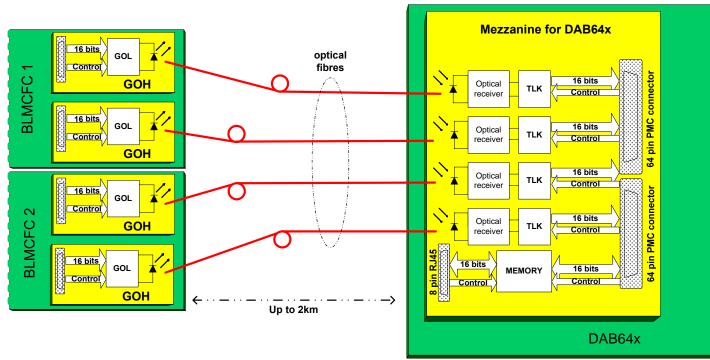

Part Name	Integral Dose (KGy)*
C/F Converter	0.5
ACTEL	3.2
AD41240	10
LVDS_RX	10
DCU2	10
GOH	3.14

Table: Radiation dose withstood by component without error.

* For 20 years of nominal operation it is expected to receive around 200 Gy.

Frameword for Transmission

• Formatting of the frameword for transmission (256 bits)


• Transmission of frameword every 40µs.

□ The data rate must be high enough to minimise the total latency of the system .

Redundant optical link

□ In order to increase the reliability and the availability of the system.

Mezzanine Cards

- Redundant transmission
- High radiation tolerance
 - > 3 KGy
- 800 Mbps
 - Data 640 Mbps
- 8bit/10bit encoding

- 4 optical diodes
 - 4 TLK (Texas Instruments) transceivers
 - 8bit/10bit decoding
 - Synchronisation
 - Clock extraction
- 1MB non-volatile RAM
 - Programmable either via FPGA or RJ45

Steps taken for a Failsafe Tunnel System

To ensure Ionisation Chamber connection:

Modulation Tests

- Tests initiated when no beam present.
- Sine wave checks the connection and the ADC.
- Rectangular wave checks the connection and the CFC.

To ensure CFC card correct operation:

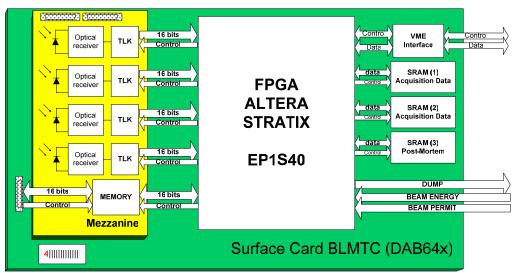
Constant Current

- A current (~10pA) is applied constantly.
- Status monitor
 - High tension check.
 - Temperature

To minimise SEU:

Radiation Tolerant Components

- Custom ASICs,
- No Configuration Data,
- Radiation Qualification.

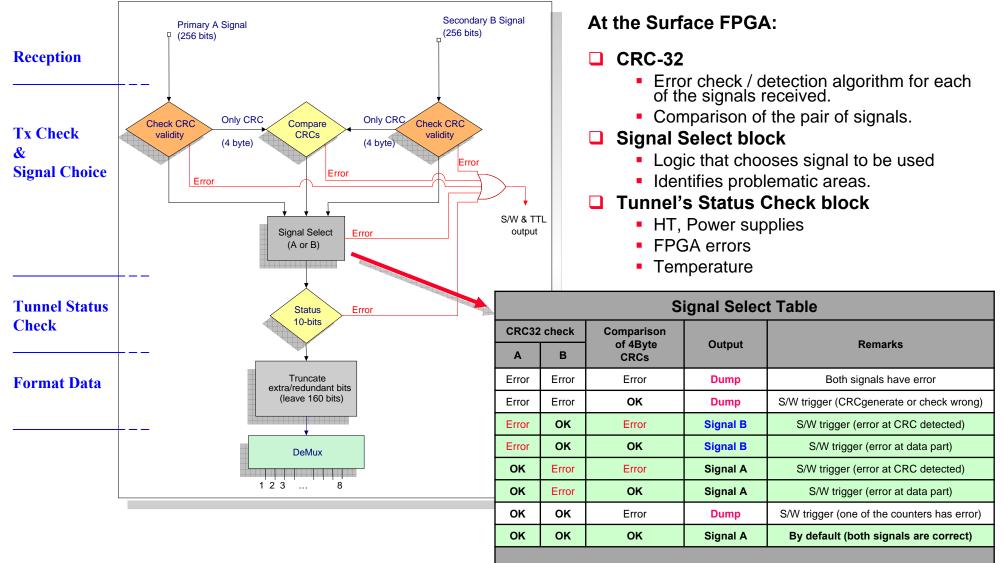

TMR (triple modular redundancy)

• FPGA design tripled and added voting.

Doubled/Tripled I/Os

- Tripled Counter inputs.
- Doubled Data and Control outputs.

Surface Card (BLMTC)



Stratix Device Features		
Feature	EP1S40	
LEs	41,250	
M512 RAM blocks (32 ×18 bits)	384	
M4K RAM blocks (128 ×36 bits)	183	
M-RAM blocks (4K ×144 bits)	4	
Total RAM bits	3,423,744	
DSP blocks	14	
Embedded multipliers	112	
PLLs	12	
Maximum user I/O pins	615	

DAB64x specifications

- Stratix FPGA
 - Vertical Migration to EP1S40
- SRAM memories
 - 512K x 32bit
- Connectors for Mezzanine
 - 2 x 64pin PMC connectors
 - Provide 3.3V, 5V, GND, and
 - Connection to 114 FPGA I/O pins.
- Card bus
 - VME64x

Transmission Check & Tunnel Status

Quench Level Thresholds

Threshold values depend on

- Beam Energy and
- Integration Time (Loss Duration)

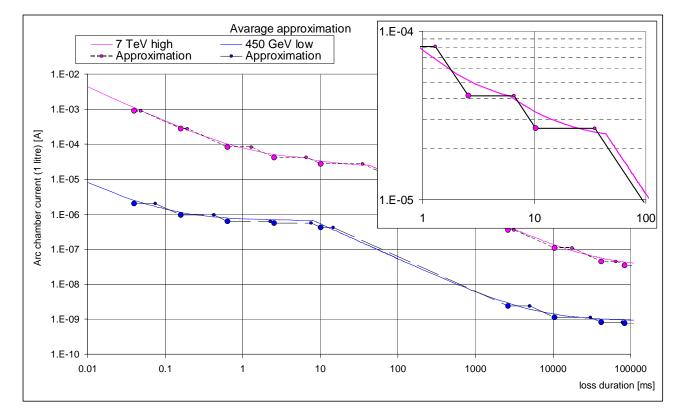
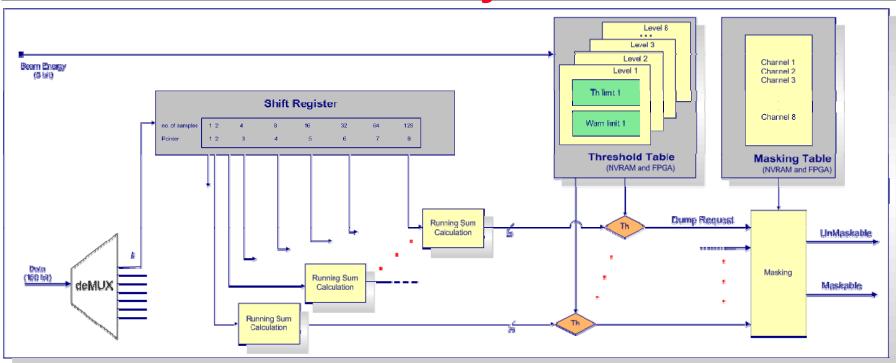



Figure and error calculations by G. Guaglio

The acquisition card transmits a value which corresponds to the particles seen over the integration time of 40µs.

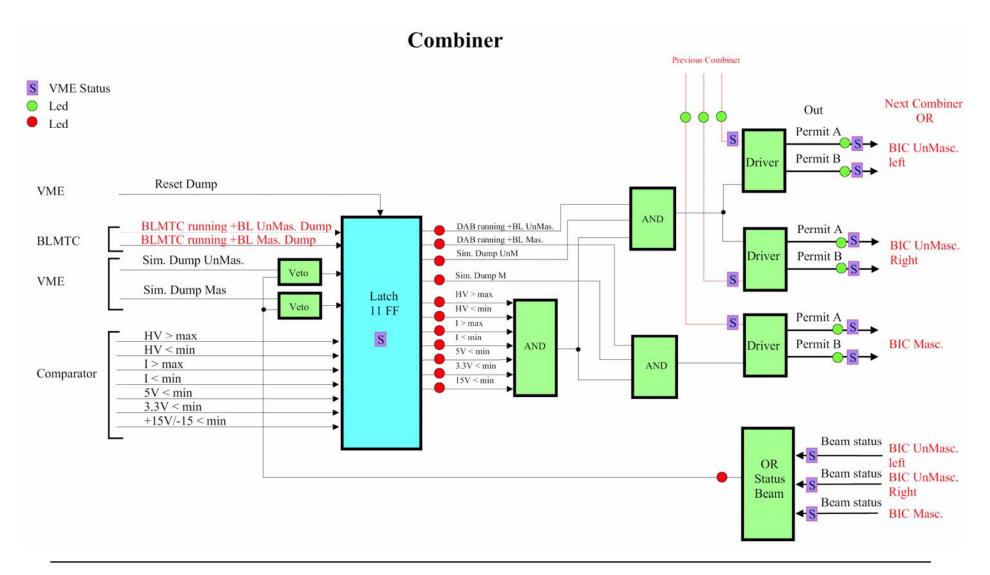
- Using this values the surface FPGA calculates and keeps 11 more running sums per detector.
- The max integration time needed to be observed is 100s.
- The intermediate observation points are found by identifying the places where the approximation introduces the minimum fitting error.

Real-Time Analysis of Data

Running Sums

- Multi-point Shift Registers holds data
- Successive calculation
- 100µs-10ms (System A)
 - 5 Running Sums
 - Max. values of the last second
- 10ms-100s (System B)
 - 6 Running Sums

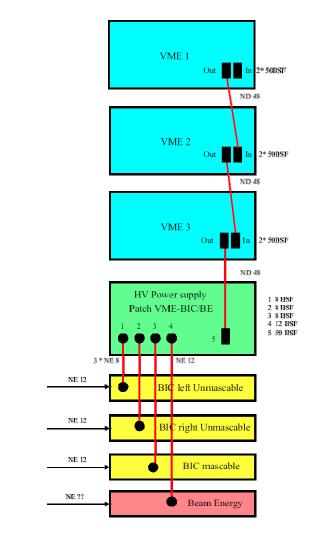
Threshold Table


- Threshold depends on energy and a acquisition time.
- Unique thresholds for each detector.
- Read at system power-on from an external Non-Volatile RAM.

Masking Table

- Masking of channels is allowed only when safe.
- Unique masking table for each card.
- Read at system power-on from an external Non-Volatile RAM.

Combiner Card's Beam Permit Logic


Gianfranco Ferioli

Combiner Card Arrangement

Beam Loss VME to BIC/BE connection

Gianfranco Ferioli

- One combiner card per crate
- Daisy-chained
 - Distributes to all BLMTC cards
 - Beam Energy
 - Beam Status
- Collects from all BLMTC cards
 - Card running
 - Maskable Dump
 - Unmaskable Dump
- Checks status of all power supplies
- High Tension Modulation Tests

Steps taken for a Failsafe Surface System

To ensure a reliable communication link:

- Double (redundant) optical link
- CRC-32 error check algorithm
 - All single-bit errors.
 - All double-bit errors.
 - Error detection four times more characters.
 - Any odd number of errors.
 - Any burst error with a length less than the length of CRC.
 - For longer bursts $Pr = 1.16415*10^{10}$ probability of undetected error.
 - > 224 bits of data + 32 bits of CRC remainder = 256 bits.

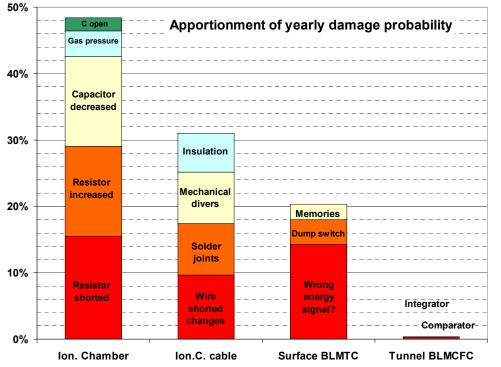
8b/10b encoding

- Clock data recovery (CDR) guarantees transition density.
- DC-balanced serial stream ones and zeros are equal/DC is zero.
- Special characters used for control sync, frame.
 - > 256 bits of data are encoded in 320 bits = 64 extra bits.

To avoid misplacement of threshold and/or masking table

- Card ID
 - Each tunnel card holds a unique 16bit number
 - Included with every transmitted frame
 - Compared with the one loaded together with the tables

To avoid loss of data

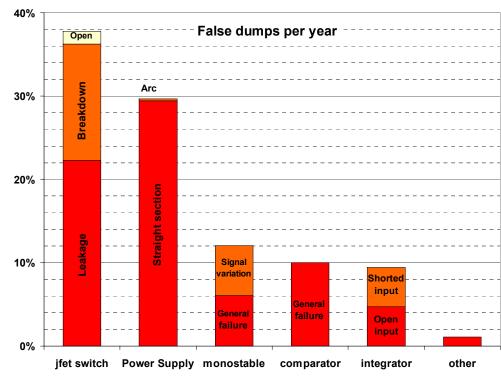

- Frame ID
 - Surface FPGA checks for missing frames
 - 16bit Frame ID number increments by one and is included at every transmission

To ensure recognition of system failures and dump requests

- Outputs (Dump signals) from the FPGA as frequency
 - At a dump request, reset, or failure the transmitted frequency will be altered.
- Outputs (Dump signals) from the surface cards are daisy chained
 - Using the VME backplane as interconnection
 - Card disconnection and/or failure is immediately recognisable by the Combiner card.

Reliability Study

by G. Guaglio



Relative probability of a system component being responsible for a damage to an LHC magnet in the case of a loss

More than 80% from the Ionisation Chamber

Relative probability of a BLM component generating a false dump.

~98% from components that are in the tunnel

