Beam loss monitoring requirements and system description

Introduction

- **Quench and damage levels dependencies**
- **System specifications**
- **Loss location and secondary showers**
- F Ionisation chambers
- **Radiation and electronics**
- **Collimation areas and beam loss measurements**
- **n** lons

Operational Range of BLMs

Machine Protection Workshop Review 2
Bernd Dehning 2

Quench Levels and Energy Dependence

Fast decrease of quench levels between 0.45 to 2 TeV

Loss Levels and Required Accuracy

Accurately known quench levels will increase operational efficiency

Reliability and Time Resolution

non-mask able: In case of a non working monitor this monitor has to be repaired before the next injection

Some more Specification Requirements

- $\overline{}$ DATA FOR THE CONTROL ROOM AND THE LOGGING SYSTEM
	- Г Loss rates normalized quench level, (energy and integration timeindependent)
	- \blacksquare Updated every second
	- \mathbf{r} Coincidence of several close-by quadrupoles
	- \blacksquare Allow frequency spectrum analysis
	- Г Long term summation for comparisons with dose detectors
- F. POST-MORTEM ANALYSIS
	- Г Store data 100 - 1000 turns before post mortem trigger
	- п Average rates few seconds to 10 minutes before a beam-dump
- $\mathcal{C}^{\mathcal{A}}$ False dumps
	- п less than one per month
- F. BEAM 1/BEAM 2 DISCRIMINATION
	- п If possible, higher tuning efficiency
- F. A set of movable BLM's

Change of Aperture at Quadrupoles

Secondary and tertiary halo tracking => proton loss location (talk S. Redaelli)

- $\overline{}$ Losses enhanced at beginning of quadrupole, due to:
	- П Beta function maximums
	- п Dispersion function maximums
	- \blacksquare Misalignments (location of bellows
	- \blacksquare Beam kings (quadrupole + cor. dipole location)
	- $\mathcal{L}_{\mathcal{A}}$ Change in aperture

Machine Protection Workshop Review 7
Bernd Dehning 7

BLM Locations in the Arcs

- **3 loss locations simulated: shower development in the cryostat, GEANT 3.**
- **The positions of the BLMs are chosen to:**
	- minimize crosstalk
	- **Example 2** reduce difference between inside and outside loss
	- difference with and without MDCO.

Shower Development in Dispersion Suppressor **Magnets**

12.04.2005

Machine Protection Workshop Review 9
Bernd Dehning 9

Beam and Magnetic Field Directions

- 4 combinations of beam directions and magnetic fields.
- 3 loss locations: inside and outside of beam screen and top of beam screen (bottom is about the same as top).

Ionisation chamber

LHC design

- **Parallel electrodes** separated by 0.5 cm
- П Stainless steel cylinder
- **Al electrodes**
- П Low path filter at the HV input
- N₂ gas filling at 100 mbar over pressure

diameter = 8.9 cm, length 60 cm, 1.5 litre

Location of Detectors

Installation with a small support and straps or cables on the cryostats

Machine Protection Workshop Review 12
Bernd Dehning 12

Ionisation chamber currents (1 litre)

Gain Variation of SPS Chambers

SPS BLMs

- F. 30 years of operation
- \mathbb{R}^3 Measurements done with installed electronic
- \mathbb{R}^2 Relative accuracy
	- П $\Delta \sigma/\sigma$ < 0.01 (for ring BLMs)
	- П $Δσ/σ < 0.05$ (for Extr., inj. BLMs)
- F. Gain variation only observed in high radiation areas
- $\mathcal{L}^{\mathcal{L}}$ Consequences for LHC:
	- No gain variation expected in the straight section and ARC
	- П Variation of gain in collimation possible for ionisation chambers (SEM foreseen for dump signal generation)

Ionisation Chamber Time Response Measurements (BOOSTER)

Intensity density: - Booster 6 109 prot./cm2, two orders larger as in LHC

Ionisation Chamber Energy Deposition Measurements and Geant4 Simulation

- $\mathcal{L}_{\mathcal{A}}$ Test in SPS T2 extraction line 400 GeV protons, medium intensity (quench levels)
- $\mathcal{C}^{\mathcal{A}}$ Chamber moved through the beam
- П Structure of chamber reproduced
- $\overline{\mathcal{A}}$ Integral difference between measurements and simulation about 25 %

Monitor Signal Chain

More details, see talk Christos Zamantzas

Current to Frequency Converter

^c**ircuit limited by:**

1. leakage currents at the input of the integrator $(< 2 pA)$

2. fast discharge with current source

Current to Frequency Converter and Radiation

- \mathbb{R}^3 Variation at the very low end of the dynamic range
- $\mathcal{C}^{\mathcal{A}}$ Insignificant variations at quench levels

Test Procedure of Analog Signal Chain

- \sim Basic concept: Automatic test measurements in between of two fills
	- Г Measurement of 10 pA bias current at input of electronic
	- Г Modulation of high voltage supply of chambers
		- $\mathcal{L}_{\mathcal{A}}$ Check of components in Ionisation chamber (R, C)
		- г Check of capacity of chamber (insulation)
		- Check of cabling
		- г Check of stable signal between few pA to some nA (quench level region)
	- Г Not checked is the gas gain of chamber (in case of leak about 50 % gain change, signal speed change – to be checked)

Systematic Uncertainties at Quench Levels

Beam Loss Display

12.04.2005

Machine Protection Workshop Review 22
Bernd Dehning 22

IR 3 Cleaning

- $\vert \cdot \vert$ Loss rate at the collimators 3 to 4 orders of magnitude higher as at the ARC locations
- $\overline{\mathbb{R}^2}$ Instead of gas ionisation detection secondary electron emission detection will be used

Simulated BLM Signals at Collimators (IP3)

 Simulation of monitor signals taking background and cross talk effects into account (collimator C/C 20/50 cm, new C/C 20/ 100 cm)

Order of magnitude of the effect is to be expected identical to old/new, IR3/IR7

BLM Signal from Upstream Collimator

- BLM3 (close to TCS2) only 57.4% "Good" signal
- \blacksquare BLM2 4%
- BLM4 9%
- BLM5 5%
- $BI M6 4%$
- BLM7 1%
- TCP1 major contributor to background
- BLM2 96%
- BLM7 20%

Transversal Variation of Monitor Location

- $\overline{\mathcal{A}}$ Best signal to background and signal to cross talk at position near to the beam
- $\overline{}$ It is expected that additional absorbers near to the vacuum chamber are not significantly improving the situation

Ions Energy Loss

Specification:

$\overline{}$ **PROTONS VERSUS IONS**

- \blacksquare **These two quantities (Ion bunch and ion beam energy) are very close to respectively a pilot bunch and a proton beam of intermediate intensity (5 10⁹ and 2.2 1012). It can be concluded that no particular properties need be added to the present specification with respect to ion beams.**
- a. **Ion loss and fluence calculation before final decision on detector location, ...**
- F **Ongoing simulations (**R. Bruce, S. Gilardoni, J.Jowett)

Reserve Slides

LHC Bending Magnet Quench Levels, LHC Project Report 44

0.8 mJ/cm3 = 0.09 mJ/g, (RHIC=2 mJ/g, Tevatron=0.5mJ/g)

 $(RHIC = 8 \text{ mW/g}$, Tevatron = 8mW/g)

Proton Shower Distribution (1)

Ionisation Chamber Time Response **Measurements**

- П Booster Pluses
	- ▛ **Duration** σ_t = 50 ns
	- П Intensity 2 $10^8 - 1 10^{10}$ prot./cm2
- T. Comparison of parallel and cylindrical geometry
	- **Parallel chamber 10 times** faster
- П Simulation (Garfield) agree with measurements

Machine Protection Workshop Review
Bernd Dehning 31

Comparison Parallel Plate Chambers Ar – N2

12.04.2005

Machine Protection Workshop Review 32
Bernd Dehning 32

Activation – Background of Monitors

- 1. Due to continuous high loss rate activation of materials
- 2. Due to background and cross talk monitor position near to the vacuum chamber

Activation and therefore reduction of monitor sensitivity will depend on: individual loss rates, materials, geometry

(Activation: 1e-4 of mean loss rate (SPS fast extraction)

Consequence: beam tuning with low intensities will be difficult