Machine protection and closed orbit

J. Wenninger AB-OP

- Aperture limits and orbit stability requirements
- Interlocking requirements
- Fast position interlock system
- Failures with bumps
- Summary

Acknowledgements : R. Jones, B. Goddard, R. Schmidt, R. Assmann, R. Steinhagen and many others

Machine apertures at injection

Mech. aperture of LHC ring defines the scale

 \rightarrow tight aperture

Protection devices protect ring aperture

Î *protect against injected beam*

Secondary collimators tighter than protection \rightarrow limit the amount of halo hitting protection devices

Primary collimators tighter than secondary \rightarrow primary collimators define the aperture bottleneck in

the LHC for cleaning of the circulating beam!

 \bullet These conditions must always be fulfilled :

 \rightarrow orbit tolerances are at the level of 0.1-0.5 $\sigma \approx$ 100-500 μ m.

! long distance correlations : some objects are separated by kms !

 \bullet The aperture definition includes tolerances for beta-beat (20%), orbit (4 mm), energy offsets, spurious dispersion...

12.04.2005 BIS review / Machine protection & Closed Orbit / J. Wenninger 2

 ${\bold a}_{\sf ring}$ ≈ 8 σ

 $a_{prot} < a_{ring}$

 \mathbf{a}_sec < \mathbf{a}_prot

a_{prim} ≈ 5-6σ < a_{sec}

Machine aperture at 7 TeV

Settings at 7 TeV for fully squeezed beams (β^* = 0.5 m IR1/5)

Low-beta triplet aperture defines the scale $\mathbf{a}_{\mathsf{triplet}}$ ≈ 9σ Protection devices must protect aperture $a_{prot} < a_{triplet}$ \rightarrow protect against asynchronous beam dump Secondary collimators tighter than protection ${\rm a}_{\rm sec}$ < ${\rm a}_{\rm prot}$ \rightarrow *minimize halo hitting protection devices* Primary collimators tighter than secondary a_{prim} ≈ 5-6σ < a_{sec} \rightarrow primary collimators define the aperture! \bullet Operation at nominal intensity requires excellent beam cleaning.

 \rightarrow orbit tolerance around collimators is in the range $\sigma/3 \sim 70 \ \mu m$.

Beam dump region : orbit tolerances

- \blacklozenge Dump channel protection : orbit excursion must be smaller than ± 4 mm. *Prevent damage to extraction channel*
- \blacklozenge Protection against asynchronous dump : orbit excursion < 0.5 -2 σ at TCDQ absorber downstream of the beam dump (depends on energy, β^* …) *Limit number of bunches escaping to collimators and other machine elements.*

Orbit stabilization

For nominal performance the orbit tolerances are very tight.

The relative position of collimators, absorbers.. must be maintained.

 \rightarrow The orbit is not a 'play-parameter' for operation, except at low intensity. *'Playing' with the orbit will result in quasi-immediate quench at high intensity.*

At the LHC the orbit must always be very well controlled, but perturbations during various phases (snapback, ramp, squeeze) can be large and fast.

→ Stabilization by a real-time orbit feedback system

Stabilization of both be Stabilization of beams around the rings ams around the rings Maintain orbit at critical collimators, absorbers and aperture limits Long distance correlations are important ! Operation of the FB limits the operational freedom of operators

Orbit feedback

Some FB system details :

- **Fully digital feedback.**
- **Centralized control with high performance (multi-processor) PCs.**
- **System involves over 100 VME front-end crates.**

Data is collected from ∼ 70 BPM crates → central control → fan out to PC crates.

- **Max. operation frequency is estimated to be ~ 25 Hz.**
- **Algorithms will aim to minimize impact of faulty BPMs** \rightarrow **wrong steering.**

Optimization of correction performance versus robustness.

A proto-type system (using the LHC BPM acquisition system) has been operated very successfully at the SPS, albeit with only … 6 BPMs (1000 at the LHC).

This FB system :

- \rightarrow plays a critical role to maintain relative alignments of protection elements.
- \rightarrow is not able to counteract orbit changes due to the most critical powering failures.
- \rightarrow is not a fail-safe system, since it is much too complex. Not part of MP system.

Fast orbit changes

A large number of failures imply:

◆ Fast *global* orbit drifts, up to ≈ 1 mm/ms in some locations (1 ms ~ 10 turns)

PC failures…

 \blacklozenge Fast amplitude growth of oscillations *Transverse damper failure or incorrect input, instabilities…*

Such orbit changes sooner of later lead to beam loss

- \blacklozenge BLMs at aperture limiting collimators see the loss first. *Critical condition: the collimators must really define the aperture !*
- \blacklozenge BLM reaction time depends on shape of the halo. *Halo is sensitive to machine details (non-linearity, beam-beam…)*

\rightarrow interlock on fast orbit drifts as complement the BLM system.

Beam position interlocking

To be protected :

 \blacklozenge Beam dump channel (± 4 mm).

 \blacklozenge Magnets & collimators from asynchronous beam dump. *beam position relative to TCDQ absorber needs to be maintained <i>slow drifts → software interlock ….*

 \bullet Collimators (and of course all the rest...) from fast orbit changes. *redundancy for the BLM system !*

Implementation issues :

 \bullet We cannot HW interlock the entire LHC orbit

\rightarrow select 'strategic' position

- \bullet Concentrate on beam dump requirements and fast position changes.
- \blacklozenge 'Slow' (< 1 Hz) orbit 'drifts' surveyed by a software interlock system.

Beam position interlock layout

 \blacklozenge IR6 (beam dump IR) has now $\underline{4}$ interlock BPMs per beam

- **2** redundant BPMs added near TCDQ and 2 near preceding Q4.
- **90° phase advance to cover all betatron phases.**
- **E** large betatron function ~ 600 m \rightarrow sensitivity.
- **Exambined protection of dump channel and protection against fast orbit changes.**

Interlock thresholds : beam dump channel

To define effective tolerances we must look at a 'bad' case:

◆ Warm D1 separation dipole failure @ 7 TeV gives ~ 60 μm/turn: Response time: 1 turn (detection) + 2 turns (BIC delay & abort gap synchronization) \Rightarrow 200 μ m movement between detection and dump.

 \blacklozenge For a single pilot bunch of 5 \times 10⁹ protons the BPMs have a single shot (turn) resolution of $~1.5\%$ of half radius:

- ~ 300 μm for 80 mm diameter BPM (at Q4)
- ~ 500 μm for 130 mm diameter BPM (at TCDQ)

 \rightarrow Interlock threshold:

Set to 4 - 0.2 - 0.5 = 3.3 mm to give an effective threshold of 4mm.

• Damper failures @ injection ~ 1σ / 4 turns ~ 400 um / turn. Requires similar threshold if trigger on a few bunches (for nominal bunches).

Interlock thresholds : collimator protection

Injection (450 GeV) :

 \blacklozenge Arc mech. aperture at ≈8σ.

 \bullet TCDQ (asynch. dump protection) sits at ≈7 σ & collimators at 5-6 σ

 \bullet 4 mm beam position tolerance corresponds to $<$ 2 σ

 \rightarrow Protected by 4mm beam position interlock

Allows Q-meter kicks at max kicker strength of 1.75 σ for a centred beam. Provides some margin for injection oscillations.

7 TeV :

- \bullet Primary collimators sit at \approx 5-6 σ with respect to the beam.
- \bullet D1 failure may result in collimator damage after ~3 ms ~ 30 turns. *loss of around 1012 protons*
- \bullet Orbit only moves by \sim 2 mm over 3 ms at interlock BPMs
	- \rightarrow must be sensitive to fast 1 mm changes.

Beam position interlock design

BDI group implementation proposal :

System is based on a modified LHC orbit digital acquisition card

- \bullet Bunch-by-bunch acquisition system
- Direct comparison of positions & thresholds performed inside a FPGA
	- \Rightarrow no dependence on external software
- Auto-triggered system
	- \Rightarrow no dependence on external timing
- \bullet For fast orbit changes, observe only relative change wrt preceding closed orbit
- \Rightarrow no dependence on external orbit references
- ◆ Two output signals to beam interlock system
	- \Rightarrow 1 signal for the beam dump aperture, 1 signal for fast changes

Beam position interlock design issues

Issues : dump channel protection

Spurious triggers, latency

How many bunches must be out of limit before dumping?

For single or few bunches this will imply an increased latency, but risk is lower

Alignment and position offsets

Do we measure these with the beam or reduce the threshold to include them?

Issues : fast orbit changes

- **Limited to relative orbit changes** *1 mm offset wrt stable orbit*
- **Comparison of current position to last orbit**

Local orbit reference updated every 20ms

Can compare single bunch position (for oscillations) & /or 1 turn orbit

Only valid for nominal bunch intensity *BPM single bunch resolution < 100*μ*^m*

Some of the issues may be determined by operational experience…

The position interlock can only intercept failures that lead to an orbit change at the beam dump IR,

\rightarrow The BPM interlock system does not protect against local bumps

We must consider the following situations :

- **Local orbit bumps with a circulating beam.**
- **Local orbit bumps during injection.**

Bumps on circulating beam

\triangle Bump growth / arcs

If the strength margin for orbit correction is taken into account,

→ cannot reach the **ARC** aperture at 7 TeV.

The ramp speed will be limited in practice to $\sim \frac{1}{2}$ the quoted figure (PC control).

\bullet BLM sampling times

.

- $Arcs$: < 2.5 ms ~ 25 turns
- **E** Collimators & critical locations : 1 turn

\rightarrow BLM system can detect a beam loss due to a bump before damage occurs.

Bumps with injected beam

Principle for safe injection

If no beam is circulating \rightarrow must inject a safe beam

 \rightarrow no problem for injection of the safe beam.

Boundary conditions for injection of unsafe beam :

- **Beam must be circulating.**
	- *A 'bumped' beam must be at least* ≈ *2-3*σ *away from aperture (low int.) For a pilot bunch, this will not lead to a quench.*
- **n** Injection oscillations are limited to \sim 5 σ by transfer line collimators.

Failure scenario :

Low intensity beam bumped close to aperture

⊕

Nominal injection of 3 $\times 10^{13}$ p i with 3σ inj. oscillation

Loss of ∼ 10¹³ protons at the bump → could lead to damage !!!

Protection against a 'bumped beam failure'

 \bullet Survey the orbit and corrector settings at injection by software interlock *1 Hz surveillance should be sufficientReference obtained from average readings/settings over few days* \rightarrow Freeze orbit during injection, i.e. no changes by operators. *But the feedback will be active !FB algorithm must not produce bumps from false BPM readings* ◆ Limit bump amplitude range & speed by control system *Limitation on corrector ramp rate Limitation on corrector ramp Can we implement this fully consistently ?* \rightarrow Enforce rigorous operation procedures *Never 'jump' to many orders of magnitude in intensity in one step pilot* Æ *intermediate intensity (few 1012 p)* Æ *nominal injection (few 1013 p)*

We have no solution based on HW interlocks, but the measures proposed above could be sufficient.

Summary

- \blacklozenge A fast beam position interlock system at the LHC is foreseen to :
	- **protect the beam dump channel against damage.**
	- **protect the LHC against fast global orbit movements.**
	- **provide redundant protection with respect to the BLM system.**
- ♦ The technical realization is feasible and the tolerances of this interlock system are acceptable.
- \blacklozenge Local bumps at injection cannot be detected by this interlock system :
	- combined failures (large bump + large injection oscillations) can lead to damage.
	- **E** counter-measures must implemented for such cases :
		- SW interlocks.
		- Protection by the control system
		- Rigorous OP procedures