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Program

Lectures I and II:

Einstein’s Contributions to Statistical Mechanics

and Quantum Theory

Lecture III:

Einstein’s Thesis at the University of Zürich

Lecture IV:

From Special to General Relativity

Lecture V:

The History and the Mystery of the Cosmological

Constant
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Some papers of NS connected with

the lectures

1. Domenico Giulini and NS: Einstein’s Impact on

the Physics of the Twentieth Century,

physics/0507107.

2. NS: Einstein’s Contributions to Quantum

Theory, hep-ph/0508131.

3. NS (in german): Light Quanta and Molecules,

A Contribution to the Annus Mirabilis,

physics/0507118.

4. NS: On Einstein’s Doctoral Thesis,

physics/0504201.

5. NS: Reflections on Gravity, astro-ph/0006423.

6. NS: General Relativity, With Applications to

Astrophysics, Texts and Monographs in Physics,

Springer-Verlag, 2004.
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7. NS: On the Cosmological Constant Problems

and the Astronomical Evidence for a Homogeneous

Energy Density with Negative Pressure.

In Poincaré Seminar 2002, Vacuum Energy – Renor-

malization, 7-51. B. Duplantier, and V. Rivasseau,

eds.; (Birkhäuser-Verlag); astro-ph/0203330.

8. NS: The History of the Cosmological Con-

stant Problem. In On the Nature of Dark En-

ergy, IAP Astrophysics Colloquium 2002, Frontier

Group, 2003, p.17; gr-qc/0208027.

9. NS: Dark Energy. In Relativity Today,

Proceedings of the Seventh Hungarian Relativity

Workshop, 127. I. Racz, ed.; (Akadmiai Kiado,

Budapest, 2004); gr-qc/0311083.

10. NS: From Primordial Quantum Fluctuations to

the Anisotropies of the Cosmic Microwave Back-

ground Radiation, hep-ph/0505249.
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Einstein’s five papers of 1905

On a Heuristic Point of View Concerning the

Production and Transformation of Light,

17 March 1905.

A New Determination of Molecular Dimensions,

30 April 1905.

On the Movement of Small Particles

Suspended in Stationary Liquids Required

by the Molecular-Kinetic Theory of Heat,

11 May 1905.

On the Electrodynamics of Moving Bodies,

30 June 1905.

Does the Inertia of a Body Depend upon

its Energy Content?,

27 September 1905.
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Einstein’s Contributions to
Statistical Mechanics

Einstein (1949):

“Not acquainted with the earlier investiga-

tions of Boltzmann and Gibbs, which had

appeared earlier and actually exhausted

the subject, I developed the statistical me-

chanics and the molecular-kinetic theory of

thermodynamics which was based on the

former. My major aim in this was to find

facts which would guarantee as much as

possible the existence of atoms of definite

finite size. [...].”
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Already as a student Einstein was very interested in

thermodynamics and kinetic theory, and he studied

intensively some of Boltzmann’s work.

September 13th 1900 to Mileva (CPAE, Vol. 2,

Doc. 75):

“The Boltzmann is absolutely magnificent.

I‘am almost finished with it. He‘s a master-

ful writer. I am firmly convinced of the cor-

rectness of the principles of the theory, i.e.,

I am convinced that in the case of gases, we

are really dealing with discrete mass points

of definite finite size which move accord-

ing to certain conditions. Boltzmann quite

correctly emphasizes that the hypothetical

forces between molecules are not essential

components of the theory, as the whole en-

ergy is essentially kinetic in character. This

is a step forward in the dynamic explanation

of physical phenomena.”
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June 1902: “Kinetic Theory of Thermal Equilib-

rium and the Second Law of Thermodynamics”

from Introduction:

“Great as the achievements of the kinetic

theory of heat have been in the domain of

gas theory, the science of mechanics has

not yet been able to produce an adequate

foundation for the general theory of heat,

for one has not yet succeeded in deriving

the laws of thermal equilibrium and the sec-

ond law of thermodynamics using only the

equations of mechanics and the probabil-

ity calculus, though Maxwell’s and Boltz-

mann’s theories came close to this goal.

The purpose of the following considerations

is to close this gap. At the same time, they

will yield an extension of the second law

that is of importance for the application of

thermodynamics. They will also yield the

mathematical expression for entropy from

the standpoint of mechanics.”
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In the third paper “On the General Molecular The-

ory of Heat”, Einstein derives the energy fluctua-

tion formula in the canonical ensemble. Recall:

〈
(E − 〈E〉)2

〉
= kT2∂〈E〉

∂T
.

“Thus the absolute constant k determines

the thermal stability of the system. The

relationship just found is interesting be-

cause it no longer contains any quantity

reminiscent of the assumption on which

the theory is based.”
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Applications of the classical theory

In his thesis “A new Determination of molecular

Dimensions” Einstein derived a novel formula for

the diffusion constant D of suspended microscopic

particles. (Lecture III.) Result:

D =
kT

6πηa
;

η = viscosity of the fluid and a = radius of the

particles (assumed to be spherical).

Brownian motion

E. repeats derivation of D (gives first a statistical

mechanical derivation of the osmotic pressure).

Short novel part:

E. considers the diffusion alternatively as the re-

sult of a highly irregular random motion, caused by

the bombardment of an enormously large number

of molecules. On the basis of some idealizing as-

sumptions, he shows that the random walks of the

suspended particles can be described by a Gaussian

process, “which was to be expected”. Moreover,
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the width of the probability distribution for the po-

sition of a particle is determined by the diffusion

constant. Therefore, the one-dimensional variance

of the position is given by the famous formula

〈
(∆x)2

〉
= 2Dt =

kT

3πη0a
t.

“If it is really possible to observe the mo-

tion to be discussed here, along with the

laws it is expected to obey, then classical

thermodynamics can no longer be viewed

as strictly valid even for microscopically

distinguishable spaces, and an exact deter-

mination of the real size of atoms becomes

possible. Conversely, if the prediction of

this motion were to be proven wrong, this

fact would provide a weighty argument

against the molecular-kinetic conception

of heat.”
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Critical opalescence

Since about 1874 it was known that the scattering

and attenuation of light passing through gas be-

comes very large near the critical point. In 1908

Marian von Smoluchowski pointed out that this

phenomenon is the result of density fluctuations of

the medium, but he did not derive a quantitative

formula for the scattering or extinction coefficient.

It was Einstein who closed this gap.

Before he approaches this task, Einstein gives a

lengthy introduction to the theory of statistical

fluctuations, based on Boltzmann’s principle. He

then applies the general theory to density fluctua-

tions of fluids and mixtures of fluids. This opening

section has to be regarded as a major and influen-

tial contribution to statistical thermodynamics.
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If the refraction index n is close to 1, this reduces

to

α(ω) =
1

6π

(
ω

c

)4
(n2 − 1)2

kT

−V (∂p/∂V )T

(ω= angular frequency of the light). With this for-

mula Einstein found a quantitative relationship be-

tween Rayleigh scattering and critical opalescence.

At the critical point this expression diverges, be-

cause the correlation length for the density fluctu-

ations diverges. As was first pointed out by Orn-

stein and Zernicke, Einstein’s implicit assumption

of statistical independence in separated volume el-

ements is then no longer valid. In this sense, Ein-

stein’s work on critical opalescence became the

starting point of several research directions of the

twentieth-century.
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Post-Einstein developments

Einstein did not have a dynamical theory of Brow-

nian motion; he determined the nature of the mo-

tion on the basis of some assumptions. Einstein’s

heuristic considerations, that have been criticized

by many people (including Einstein himself), are

tantamount to the assumption (iii) of the follow-

ing theorem:
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Theorem. Let Xt (0 ≤ t < ∞) be a stochastic

process, satisfying the properties:

(i) Independence: Each increment Xt+∆t − Xt is

independent of {Xτ , τ ≤ t}.

(ii) Stationarity: The distribution of Xt+∆t − Xt

does not depend on t.

(iii) Continuity: If P denotes the probability mea-

sure belonging to the stochastic process, then

lim
∆t↓0

P ({|Xt+∆t −Xt| ≥ δ})
∆t

= 0, for all δ > 0 .

(iv) Xt=0 = 0.

Then Xt has a normal distribution with 〈Xt〉 = 0

and 〈X2
t 〉 = σ2t, where σ is a numerical constant.
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The theory of Brownian motion of Einstein is highly

idealized, since for example the velocity of a parti-

cle is not defined. Langevin’s approach, perfected

by L.S. Ornstein and G.E. Uhlenbeck in 1930, is

closer to Newtonian mechanics of particles and is

thus truly dynamical. In practice, for ‘ordinary’

Brownian motion, the predictions of the two theo-

ries are, however, numerically indistinguishable.

In the Ornstein-Uhlenbeck theory the velocity pro-

cess Vt is described in terms of the stochastic dif-

ferential equation (Langevin equation)

V̇t = −αVt + σξt;

ξt denotes ‘white noise’.

The theory of stochastic differential equations has

expanded into a huge field of stochastic analysis,

with rich applications in physics, engineering, and

mathematical finance. In quantum physics (gener-

alized) stochastic processes have become very im-

portant through Feynman-Kac path integral repre-

sentations.
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Properties of Ornstein-Uhlenbeck process

• The distribution of Vt converges for large t to a

Gaussian distribution with mean zero and variance

σ2/2α (with equipartition 1
2mσ2

2α = 1
2kT ); dissipa-

tion α induces thus a fluctuation

σ2 =
2α

m
kT.

• The distributions of the positions Xt converge for

large t to those of the Gaussian process

B̃t = X0 +
√

2DBt ,

Bt = Brownian (Wiener) process with variance 1,

X0 = initial position of the particle, and

D =
σ2

2α
=

kT

mα
.

The distribution function of Xt is thus,

pt(x) =
1√

4πDt
e−x2/4Dt ;

satisfies the diffusion equation

∂tpt −D∂2
xpt = 0.

Therefore, D is the diffusion constant; given by the

Einstein value, if we also use Stokes’ law for α.

17



Einstein’s Contributions to
Quantum Theory

Einstein to O. Stern:

“Ich habe hundertmal mehr über Quanten-

probleme nachgedacht, als über die allge-

meine Relativitätstheorie.”

———————————

NS: hep-ph/0508131
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Einstein’s first paper
from 1905

Einstein to Habicht, May 1905:

“ I promise to send you four papers [...].

The first deals with the energetic proper-

ties of light and is very revolutionary, as

you will see. [...] The forth paper deals

with the electrodynamics of moving bod-

ies. The kinematic part of it will interest

you.”

The significance and originality

of the paper

“On a heuristic point of view concerning the

production and transformation of light”

can hardly be overestimated.
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Opening: Classical physics implies

a nonsensical radiation law;

first correspondence argument

classical physics ⇒

ρ(ν, T ) = (8πν2/c3)kT

: UV divergence!!!

but approximately satisfied for

large wavelengths and radiation densities;

satisfied by Planck distribution, if

NA = 6.17× 1023.

“The greater the energy density and the

wavelength of the radiation, the more

useful the theoretical principles we have

been using prove to be; however, these

principles fail completely in the case of

small wavelengths and small radiation den-

sities.”
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Einstein’s statistical analysis of

Wien’s law:

ρ(T, ν) =
8πν2

c3
hνe−hν/kT

EV (T, ν): energy of radiation in volumen V

and small frequency interval [ν, ν + ∆ν],

EV = ρ(T, ν)V ∆ν; SV = σ(T, ν)V ∆ν.

Thermodynamics ⇒
∂σ

∂ρ
=

1

T
.

⇒
∂σ

∂ρ
= − k

hν
ln

[
ρ

8πhν3/c3

]
.

⇒

SV = −k
EV

hν

{
ln

[
EV

V ∆ν8πhν3/c3

]
− 1

}
.

Einstein is interested in the V -dependence:

SV − SV0
= k

E

hν
ln

(
V

V0

)
= k ln

(
V

V0

)E/hν

.
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SV − SV0
= k ln

(
V

V0

)E/hν

‘Boltzmann’s principle’:

S = k lnW

⇒

W =

(
V

V0

)E/hν

;

comparison with ideal gas (N particles):

W =

(
V

V0

)N

“Monochromatic radiation of low density

(within the range of Wien’s radiation for-

mula) behaves thermodynamically as if it

consisted of mutually independent energy

quanta of magnitude hν.”
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Light quantum hypothesis

So far no revolutionary statement has been made.

The famous sentences express the result of a sta-

tistical mechanical analysis; lead Einstein to

the hypothesis:

“If, with regard to the dependence of its

entropy on volume, a monochromatic ra-

diation (of sufficient low density) behaves

like a discontinuous medium consisting of

energy quanta of magnitude hν, then it

seems reasonable to investigate whether

the laws of generation and conversion of

light are so constituted as if light consisted

of such energy quanta.”

Application:

Emax = hν − P.
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Einstein’s bold light quantum hypothesis was very

far from Planck’s conception. Planck neither en-

visaged a quantization of the free radiation field,

nor did he, as it is often stated, quantize the energy

of a material oszillator per se.

It was Einstein in 1906 who interpreted Planck’s

result as follows:

“Hence, we must view the following propo-

sition as the basis underlying Planck’s the-

ory of radiation: The energy of an elemen-

tary resonator can only assume values that

are integral multiples of hν; by emission

and absorption, the energy of a resonator

changes by jumps of integral multiples of

hν.”
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Energie and momentum fluctuations

of the radiation field

Einstein 1909: “On the present status of the

radiation problem”

variance of EV :

〈
(EV − 〈EV 〉)2

〉
= kT2∂〈EV 〉

∂T
= kT2V ∆ν

∂ρ

∂T
;

for Planck distribution:

〈
(EV − 〈EV 〉)2

〉
=

(
hνρ +

c3

8πν2
ρ2

)
V ∆ν ;

interpretation: Particle-Wave Duality.
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1909: Salzburg Lecture

“turning point in the development of

theoretical physics” (W. Pauli):

“It is therefore my opinion that the next

stage in the development of theoretical

physics will bring us a theory of light that

can be understood as a kind of fusion of

the wave and emission theories of light.”
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Reactions:

Planck, Nernst, Rubens, Wartburg in 1913:

“In sum, one can say that there is hardly

one among the great problems in which

modern physics is so rich to which Einstein

has not made a remarkable contribution.

That he may sometimes have missed the

target in his speculations, as, for example,

in his hypothesis of light-quanta, cannot

really be held to much against him, for it is

not possible to introduce really new ideas

even in the most exact sciences without

sometimes taking a risk.”
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Millikan 1915:

“Despite the apparently complete success

of the Einstein equation, the physical the-

ory of which it was designed to be the sym-

bolic expression is found so untenable that

Einstein himself, I believe, no longer holds

to it.”
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1916: “On the Quantum Theory of Radiation”

• “An amazingly simple derivation of Planck’s

formula, I should like to say the derivation”.

• momentum transfer in random direction for

each elementary process = hν/c.

“The weakness of the theory lies, on the

one hand, in the fact that it does not bring

us any closer to a merger with the undula-

tory theory, and, on the other hand, in the

fact that it leaves the time and direction of

elementary processes to ‘chance’; in spite

of this I harbor full confidence in the trust-

worthiness of the path entered upon.”
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Einstein studies the Brownian motion of

molecules in thermodynamic radiation field;

molecule experiences:

• a systematic drag force Rv; leads in a small time

intervall (t, t + τ) to the momentum change Rvτ ;

• an irregular change of momentum ∆ in the time

τ , due to fluctuations of the radiation pressure.

In thermal equilibrium

〈(Mv −Rvτ + ∆)2〉 = 〈(Mv)2〉
assuming 〈v ·∆〉 = 0 implies

〈∆2〉 = 2R〈M2v2〉τ = 2RkTτ.
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“Nadelstrahlung”

recall

〈∆2〉 = 2RkTτ ;

absorption and induced emission →

R =
1

3

(
hν

c

)2 1

2kT
Z,

Z = number of elementary processes per sec.

Interpretation: corresponding

〈∆2〉 =
(

hν

c

)2
〈cos2 ϑ〉S2Zτ,

hence directed recoil = hν/c also for

spontaneous emission.
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Calculation of resistive force R

K: rest system of radiation; K’: rest system of

atom; sees anisotropic radiation field. Partition

sum:

S := gne−En/kT + gme−Em/kT + · · · .

Fraction of time in state En = gne−En/kT/S; cor-

respondingly for state m. Number of absorptions

n → m per unit time from solid angle dΩ′

=
1

S
gne−En/kTBn

mρν0

dΩ′

4π
; ν0 =

Em − En

h
;

correspondingly for induced emission m → n

=
1

S
gme−Em/kTBm

n ρν0

dΩ′

4π
.

With Einstein relation gmBm
n = gnBn

m the momen-

tum transfer per unit time in the x-direction is

−Rv =
hν0

c

1

S
gnBn

m

(
e−En/kT − e−Em/kT

)

×
∫

ρν0(θ
′, ϕ′) cos θ′dΩ

′

4π
.
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Calculation of ρν0(θ
′, ϕ′)

Use (Exercise)

ρ′ν′
ν′3

=
ρν

ν3

and the Doppler shift in first order:

ν = ν′
(
1 + v

c cos θ′
)
. This gives

ρ′ν′ =
(
1 +

v

c

)−3
ρ[1+v

c cos θ′]ν′ ,

ρ′ν0
'

[
ρν0 +

(
∂ρν

∂ν

)

ν0

ν0
v

c
cos θ′

] (
1− 3

v

c
cos θ′

)

' ρν0 +
v

c
cos θ′

[
ν0

(
∂ρν

∂ν

)

ν0

− 3ρν0

]
,

thus
∫

ρ′ν0
cos θ′dΩ

′

4π
= −v

c

[
ρν0 −

1

3
ν0

(
∂ρν

∂ν

)

ν0

]

=
v

c

{
ν4

3

∂

∂ν

(
ρν

ν3

)}

ν=ν0

.
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→ (writing ν instead of ν0)

R =
hν

c2
1

S
gnBn

me−En/kT
(
1− e−hν/kT

)

×
[
−ν4

3

∂

∂ν

(
ρν

ν3

)]
.

For the Planck distribution

R =
1

3

(
hν

c

)2 1

kT

gn

S
e−En/kTBn

mρν.

Note that gn
S e−En/kTBn

mρν is the number of absorp-

tions per unit time. So if Z denotes the number of

elementary processes per unit time, we indeed find

R =
1

3

(
hν

c

)2 1

2kT
Z.
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Einstein to Besso (1916):

“With that, [the existence of] light-quanta

is practically certain.”

Einstein to Besso (1918):

“I do not doubt anymore the reality of ra-

diation quanta, although I still stand quite

alone in this conviction.”

Einstein to O. Stern:

“Ich habe hundertmal mehr über Quanten-

probleme nachgedacht, als über die allge-

meine Relativitätstheorie.”
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