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Ionizing Radiation 1s Hazardous to Humans
The more heavily 10ni1zing it 1s
the greater the hazard...
Two general exposure regimes exist:
— Acute—Risk = Incapacitation & imminent death

— Chronic—Risk = Stochastic long-term effects

The Space Radiation Environment is Unique

— Nothing like 1t remotely exists on Earth, so...
— We have no experience 1 predicting the effects!

sgCurrent policy calls for Astronauts to be treated the

same as radiation workers on Earth (e.g. like workers
at CERN!!!!)




*Today we will explore the Space Radiation Environment...

Tomorrow we will look into the effects of this radiation on
Astronauts. ..

e...Then, we 'will think about going back the Moon and
Mars...




Space Radiation Sour ces

Galactic Cosmic Rays
~— + Albedos
— Caused by
These
Sources

From J. Barth
NASA/GSFC
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Solar Radiation Sources

e Solar Wind

— NOT a Radiation Hazard to Astronauts—Can
cause metals to become brittle over long times

» Solar X-Rays and y-Rays

Low doses 1n thinly shielded situations...

« Solar Particle Events—SPE’s

— Coronal Mass Ejections—CMESs (& Associated
Flares can give rise to Solar Energetic
Particles—SEP’s)
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Coronal Mass Ejections—CME’s

2000/02/27 01:54

Size of Earth S— SOHO
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SOHO Image (6 Hours Later)

/ Charged Particle
- Tracks—NOT Stars

2000,/02/27 07:42 SOHO/LASCO

CERN Course — Lecture 1 Nl Understanding the
October 26, 2005 — L. Pinsky hoi Space Radiation Environment




1103— CME

“Snow” =
subsequent
hits by p &
heavier 10ns

on the photo-
\=r— imaging device
y due to particles

N - i A - ; accelerated by
13:30(C2) 13:46(C3) SOHO/LASCO the CME. 3

12:36(C2) 12:41(C3)

Energetic Solar Particle Events caused by a Coronal Mass Ejection

SOHO/LASCO
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(Amari et al 2003 —flux “ cancellation”) (Courtesy T. Antiochos, NRL)

Why do CME’s
Occur?

(DeVoreet al)
Twisted Flux Rope Models

prominence

« - 0000 = Breakout Reconnection

day 2005 | Field-lines time = 0.000000000000000+000

e ’r—! Model Models “
Bk :

A SET ® Multi-polar field & footpoint shear

» Reconnection removes overlying flux ——
* CME due to run-away expansion, y

L,
accelerates when flare turns on / \;:- ﬁg
(fromLynchetal ) Horibbons \3ee\0 )

iy

S

et -”
!;1 -

We don’t anW ' X-ray loops
(e.9., T. Forbes)
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The Solar Cycle

I'he Sun’s magnetic field inverts on an approximately
11 year cycle

It takes 2 successive 11 year cycles return the polarity
to the original configuration.

The effects seen during each cycle differ from
“positive” to “negative’” cycles
ALL SOLAR ACTIVITY FOLLOWS THE SOLAR

CYCLE (Sunspots, Flares, CME’s, Solar Wind
Fluence, etc.)
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Simulation of CME Shock
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- Courtesy
1.
(ogidemiy) Loglem™) G.P. Zank
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Characteristics Depend on Longitude
of the Event with respect to Earth

» Rise time-Faster the
farther west the event is
with respect to Earth.

» Compostion ratios

 Spectral Hardness

* [ntensity

Lee 2005 From C. Cohen
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Intensity profiles

—
o

Proton intensity
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Proton Intensity

Only the fastest
CMEs (~1-2 %) drive
shocks which make 'SEE Courtesy
high-energy particles. AP G.P. Zank

27 28
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Phase space evolution — time sequence
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At t=0.85 T, we can see clearly that
there are more backward propagating
particles than forward ones between
20<K<30 MeV.

At t=0.95 T, it is more pronounced for
K~10 MeV.

Understanding the
Space Radiation Environment




Solar Particle Event Intensity

Figure D.2. Time Course of a Figure D.3. Distribution in Energy of Proton
Solar Particle Event Fluxes for Major Past SPE’s (Free Space)
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Integral Fluence, Protons/cm?

Proton Kinetic Enargy, MeV

Most events are protons only, some show significant 3He and He & a few contain
heavy ions. The hardest events have fluxes out to ~ 1 GeV/A...  From NASA 1996
Strategic Program Plan
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Characteristics - Composition
Variability

* heavy 1ons still important not predictable from proton measurements

* mostly protons

76 Large SEP Events (1997-2003)
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SEP Composition Variability

* mostly protons

* heavy 1ons still
important

— not predictable
from proton
measurements

— very variable

— dependent
on energy

From C. Cohen

CERN Course — Lecture 1
October 26, 2005 — L. Pinsky

o

o

2001 DOY 267 2002 DOY 236

T — T sy 2 TV

Sezo. .

10
Energy (MeV/n)

Understanding the
Space Radiation Environment




“Bastille Day” 2000 SPE

GOESE Proton Flux {5 minute data}
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Estimating the “Worst Case” Event

Start with this M\ S—

October 1989 | ; . eomey
SPE \ . ) ‘ x >100 M eV

Courtesy of L. Townsend, US NCRP
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Assume Hardness of the
August 1972 Event

Effective

Shielding Z‘;SVE)’ % Diff.

337.5 203.9%
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Effective “Skin Dose” Behind Shielding

Courtesy of L. Townsend, US NCRP
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Compare with
Oct. 26 - Nov. 6, 2003 SPE
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Courtesy of Kim, Cucinotta & Wilson
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2003 v. 1972 SPE Dose Rates

2003 1972

Althickness, glent

Al thickness,
g/cmZ

Dose Rate, cSv/h

0.001 5

Dose Rate, cSv/h

00001 7

0.00001 4

0.000001

Courtesy of Kim, Cucinotta & Wilson
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Cummulative Dose Equivalents
Behind Aluminum Shielding

Cumulative Do
i
K

Courtesy of Kim, Cucinotta & Wilson
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Fold in Antarctic Icecap Data...

e |cecoredatafrom the Antarctic indicate
that thelargest event in past ~ 500 years

was probably the Carrington Flar e of
1859

- fluence ~ 20x larger than Aug 72

- gpectrum ener gy dependence
unavailable, assume hard spectrum

Courtesy of L. Townsend, US NCRP
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Forcasting CME’s & SPE’s

We cannot (reliably) forecast CME’s 1n advance
We cannot forecast which CME’s will have SEPs
We cannot give reliable “all clear” forcasts.

CME:s clearly pose an acute dose threat in lightly
shielded exposures

“Now Forecasting™ 1s a possibility by a few hours

SPE’s may be an example of “Self-Organized
Criticality” from non-linear theory...
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Trapped Radiation
“VAN ALLEN BELT” Particles
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kTrajectory of
trapped particle

Mirror point
(Pitch angle of helical trajectory = 90°)

Understanding the
Space Radiation Environment




Inner and Outer Belts
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2’7-Day
Averages

« Outer Belt electrons filled by Solar Wind—Sensitive to SW Velocity
« Inner Belt protons due to albedo neutron decay.
* South Atlantic Anomaly provides a significant exposure in LEO

From G. Reeves
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Relativistic Electron Events 1992 1995

1.8-3.5 MeV Electron Flux
(cm “-s-sr-keV)”"

LMIJU& MM' M' Ll M “H, LN

July Jan. July Jar . July JAan.
1992 19493 1993 1994 1994 19495
Year

Reeves GRL 1998



:ﬂu;igt;;?;:ﬂ: E::;l::;ion of Trapped Protons S Outh 500k alt.
e Bl Atlantic
Anomaly caris

Surface

plem*MeVday

Rotational

N

; 3.40.
Nagnetic/
Veg _ ® esa 1994 k

South Allantic Anomaly
{200 km from Earth's Surface)

From NASA SPP
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Fluence Contours in the SAA
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|nher and Outer Belts

* |nner Belt
- mainly protons,; energiesup to ~500 M eV

- 400 MeV peak ~1.3 R¢
- 4MeV ~20R.

« Quter Belt
- mainly electrons, energies > several MeV

- Largevariations (2-4 orders of magnitude)
over periodsof hoursto days

» Rapid transitsthrough beltslimit dosesto crews
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LEO DOSES

GCR dominates at low altitudes

SAA protons dominate at higher altitudes
About half and half at ~ 400 km altitude
Shuttle flights (28.5-62°; 220-615 km)

- crew doses : 0.02 — 3.2 cGy

MIR (51.6° ~ 400 km)

- crew doses: 2.3 — 8.2 cGy

ISS (51.6°; ~ 400 km)

- crew doses: ~ 5 cQy (solar max)
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GCR & The Solar Cycle

ISES Selar Cycle Sunspot NMumber Frogression
Data Through 30 Sep 95
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Modulation
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7500 _ Bartol Research Institute, University of Delaware
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Smoothed Sunspot Number
Monthly Averages

Cycle 20

McMurdo, Antarctica, Neutron Monitor

27-Day Averages - data through March 2004
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1960 1965 1970 1875 1980 1985 1990

YEAR

Versus Sunspot Number
[From Bartol]
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1995

2000

RP &l 2004

N@A GCRs: Solar Modulation

CNO - 24 Hour Averaged Mean Exposure Flux
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1. Boxth JEEE-NSREC Sinst Cnewse 1997

CNO—24 Hour Averages
[NASA—1IJ. Barth]
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Predicting Solar Activity
Based on Past Observations

Cycle 23

Population distribution level, percent
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Measured sunspot number

Smoothed sunspot number

Cycle 24

Projected smoothed
sunspot number at level, percent

<y(t)>, Eventslyear
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Courtesy of Kim, Cucinotta & Wilson
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Solar Modulation—Prior Work

Parker (1965)

Badhwar-O’Neill
(1990)

Fisk (1996)

Kota & Jokipii
(1999-2000)

“CalTech” (2001)

No ab 1nitio model
exists. ..
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Solar Modulation

* The combined influence of the magnetic fields and
the Solar Wind environment within the Solar
Heliosphere causes the Local Interstellar
Spectrum (LIS) of Galactic Cosmic Rays (GCR)
to be changed when viewed at some point well
within the Heliosphere.

We do NOT know the LIS a priori, although CR
source and galactic propagation models have been
used to predict it..

r

T'he effects are separately rigidity, charge and
mass dependent, so the influence is species
dependent...
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Cosmic Ray Transport Equation

 (Daiffusion) Particles diffuse through irregularities
and turbulence in solar wind and imbedded
magnetic fields.

* This 1s essentially a 1-D Approximation (Even 1f
the 1-D 1s Radial...)
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Transport Equation (cont.)

* (Convection) Irregularities are convected
outward at solar wind speed. Generally
causes an energy loss as an inverse function
of r (Radial distance from the Sun...)

(Adiabatic Cooling) Scattering tends to
make particles 1sotropic 1n frame of solar
wind, leading to adiabatic cooling 1n
expanding solar wind.

(Drifts) Drifts are due to gradients and
curvature of magnetic field lines.
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Transport 1n Practice

» Normally solve spherically symmetric
equation

* Need mputs of the radius of heliosphere
(from Voyager), solar wind speed (normally
assumed constant), local interstellar
spectrum of CR’s (either assumed or from
galactic transport models.) One generally
does this backwards. (1.e. Iterate the LIS to
give the best fit to the 1-AU data)
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Transport 1n Practice (cont.)

 Ideally, elements of diffusion tensor and
drift velocities would be derived from
detailed knowledge of interplanetary
magnetic field. In practice, sismple forms for
terms assumed, overall normalization of
coefficients derived by fitting observed
cosmic ray spectra.

In the end, the best one can say 1s that the
form 1s suggested by physics, but NOT the
details...
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To “Predict” GCR Spectra...

*Heavily Approximate the Description:

Where p 1s 1on density
V, 1s solar wind speed (assumed constant at 400 km/s)

D,(R) is a constant diffusion coefficient at 1 AU assumed a function of rigidity which varies
as Dy(R)r

s 1s a fitting parameter varying from ~ 0 to 2
1, 1s the size of the modulation cavity (50-100 AU)

CERN Course — Lecture 1 Nl Understanding the
October 26, 2005 — L. Pinsky hoi Space Radiation Environment




Prediction Continued...

— @ (integrand first expression) from y? fitting species fluence satellite data

Phi(t) Fit From Satellite lon Data

l
\

A
W WLy

1/1/52 6/23/57 12/14/62 6/5/68 11/26/73 5/19/79 11/8/84 5/1/90 10/22/95

CERN Course — Lecture 1 Nl Understanding the
October 26, 2005 — L. Pinsky hoi Space Radiation Environment




Neutron Monitor Data

Climax Neutron Monitor Daily Counts
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Together

Phi(t) and Climax(t-95 Days)

1/ 1/ 52 6/ 23/ 57 12/ 14/ 62 6/ 5/ 68 11/ 26/ 73 5/19/ 79 11/ 8/ 84 5/ 1/ 90 10/ 22/ 95
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Fitting
* Scatter Plot Phi(t) vs. Climax(t-t’)

e Three Populations
» Correspond to Helio-Magnetic Field Polarity
¥? minimized by t’=95 days

NO MECHANISM SUGGESTED
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Now that the Voyagers are
Solar Wind Termination Shock i gOing beyond the SOIar Wind’s
Interstellar eliopause . . -
Wind termination shock it is
' becoming clear that not all of
the GCR modulation occurs
inside this boundary as was
once thought.
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Since Voyager 1 crossed the
termination shock in December
2004 it has continued to observe an
increase in the GCR intensity.

This increase is seen at Voyager 2
as well.

Apparently significant modulation is
occurring in the heliosheath.
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Figure D.1. Abundances (a) and Energy Spectra (b) of GCR
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Nuclear Composilion
of Galactic Cosmic Rays
(~2 GeV/nuc)
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Solar Modulation Effects
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Local Interstellar Spectrum

There 1s Ice Core data that suggests that the
LIS may vary substantially in addition to
the effects of Solar Modulation.

Factors of 2 cannot be ruled out at present.
Such changes cannot be predicted.

We currently seem to be at a relatively low
ebb with respect to the “recent” past.
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The Space Radiation Environment
Summary

- Solar Particle Events
— Acute Dose Threat
— Relatively “Soft” spectrum
— GQreater Problem on Lunar Surface & in Deep Space than LEO
— Unpredictable, but most likely amenable to shielding...

» Trapped Radiation

— Earth Orbit Issue Only
— Intense but low energy-Amenable to shielding...

« GCR
Chronic Dose Threat
Relatively Hard Spectrum
Substantial Relativistic Heavy Ion Composition
Not Easily Amenable to Shielding...
Variability due to Modulation & Possible Variation in LIS...
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Summary of Solar Cycle Issues

SPE’s
— Much more likely at Solar Maximum
— Rare at Solar Minimum

Trapped Radiation
— Affected by Solar activity—Greater (@ Solar Max

GCR
— Modulated by Solar Wind and Field Turbulence

— Maximum GCR Fluence at Solar Minimum 1n the inner Solar System &
vice versa...

Solar Cycle Polarity

— Alternate Cycles are different due to different magnetic field orientations
and charge asymmetry (protons are positive...), especially regarding the
interaction with the Earth’s magnetic field...
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