- $1) \quad DA\Phi NE$
- 2) Synchrotron Light
- **3)** Electron Beams
- 4) Free Electron Lasers
- 5) Detector R&D
- 6) CNAO-Hadrontherapy

LNF : a multidisciplinary laboratory

INFN-LNF

Road Map

- 7) **Particle acceleration**
- 8) Future programs

Research Division

.....many other experiments.....that I will not mention today... Panorama LNF

Acceleratori	Fisica Nucleare	ARCHIMEDE
• ATLAS	1. AIACE	CORA
• LHC-b	2. HERMES	DEUTER
• CMS	3. GRAAL	E-CLOUD
• BABAR	4. SIDDHARTA	FLUKA
• CDF	5. VIP	FREETHAI
	6. GRAAL	LAZIO-SIRad
Astroparticelle		MINCE
• NAUTILUS		MA-BO
• OPERA		MIVEDE2
• PVLAS		POLYX
• RAP		SUE
• ROG		SAFTA2
• VIRGO		SI-RAD
• WIZARD		GILDA
• LARES	www.lnf.infn.it	

Messaggio: LA DIVISIONE ACCELERATORI FUNZIONA BENE

Particle physics with KLOE :

Vus from KL, KS and charged K Kaon form factors Pion form factors/g-2 Ks rare decays Charged kaon decays KS semileptonic decays KL branching ratios KL life time KS to γγ Φ radiative decays eta and eta' decays KO-KObar interference

2.2 ft⁻¹ collected by KLOE 240 pb⁻¹ a 1000 MeV (below the Φ)

Undulator Radiation

...need the use of high brilliance photo-injectors....

The electron trajectory is determined by the undulator field and the electron energy

$$\langle \beta_{\perp} \rangle \approx \frac{K}{\gamma} = \frac{eB_u \lambda_u}{2\pi \gamma mc^2}$$

The electron trajectory is inside the radiation cone if $K \leq l$

$$\lambda_{rad} \approx \frac{\lambda_u}{2\gamma^2} (l + K^2)$$
 TUNABILITY

$$P_T = \frac{N_e^2 e^2}{6\pi\varepsilon_o c^3} \gamma^4 \dot{v}_{\perp}^2$$

R&D on detectors

Electron Beam Energy (MeV)	155
Bunch charge (nC)	1.1
Repetition rate (Hz)	1-10
Cathode peak field (MV/m)	120
Peak solenoid field @ 0.19 m (T)	0.273
Photocathode spot size (mm, hard edge radius)	1.13
Central RF launch phase (RF deg)	33
Laser pulse duration, flat top (ps)	10
Laser pulse rise time (ps) 10%→90%	1
Bunch energy @ gun exit (MeV)	5.6
Bunch peak current @ linac exit (A) (50% beam fraction)	100
Rms normalized transverse emittance @ linac exit (mm-mrad); includes thermal comp. (0.3)	< 2
Rms slice norm. emittance (300 µm slice)	< 1
Rms longitudinal emittance (deg.keV)	1000
Rms total correlated energy spread (%)	0.2
Rms incorrelated energy spread (%)	0.06
Rms beam spot size @ linac exit (mm)	0.4
Rms bunch length @ linac exit (mm)	1

ELECTRON BEAM PARAMETER LIST

The Linac of SPARC is in the commissioning phase

The SPARC test facility will start operating in 2006

- Ultra-brilliant 150 MEV electron beam
- RF and magnetic electron bunch compression
- Diagnostics of ultra-short, low emittance electrons beam
- SASE FEL experiment
- Seeding experiment
- Synchronization
- Diagnostics for ultra-short radiation pulses
- Thomson X-source
- Plasma acceleration
- IFEL acceleration
- Channeling
- Quantum SASE FEL

Experimental setup for LWFA acceleration of externally injected electrons in a gas-jet plasma

CENTRO NAZIONALE ADROTERAPIA ONCOLOGICA <u>1.2 GeV proton synchrotron, C-ions</u>

Setting up a system to cure Cancer in a systematic way for several thousands people per year

It is an experiment

The accelerator is under construction-Commissioning in 2007.

Big contribution from LNF-INFN

C.Sanelli

CTF3 at CERN

Delay Loop and transfer line final lay-out

Transfer line: installed and commissioned. Delay Loop: installed

> D.Alesini, G.Benedetti, C.Biscari, R.Boni, M.Castellano, A.Clozza, A.Drago, D.Filippetto, A.Gallo, A.Ghigo (resp), F.Marcellini, C.Milardi, L.Pellegrino, B.Preger, M.A.Preger, R.Ricci, C.Sanelli, M.Serio, F.Sgamma, A.Stecchi, A.Stella, M.Zobov

> > **Accelerator Division Technical Staff**

Combiner Ring: INFN design

The INFN collaboration continues with the realization of the vacuum chamber of the combiner ring (2006-2007), and the participation to the commissioning of the entire machine (2007-2009)

10000

FUTURE LINEAR COLLIDER LNF at EUROTeV

- Coordination of the Working Package on Damping Rings (S. Guiducci)
 - ECLOUD: study of the instabilities from e-cloud
 - Code benchmarking at DAFNE (C. Vaccarezza)
 - Misure di SEY (Secondary Emission Yield) (R.Cimino)
 - RFSEP : Application of RF-deflectors for injection and extraction in the damping rings. (D. Alesini, F. Marcellini)
 - WGLRDYN: Magnetic field simulation in the Wiggler and computation of the dynamical aperture (M. Biagini)
- Participation to the Working Package GANMVL (Global Accelerator Network Multipurpose Virtual Laboratory) (G. Di Pirro)

We consider mandatory to have also R&D on accelerator physics at LNF

- 1) Analytic upgrade of DAFNE to the highest possible luminosity
- 2) Important upgrade in 2010 to increase even further the luminosity, which is required by physics

....we propose to upgrade DAFNE:

in Luminosity at the Φ resonance (times 7) ...and in Energy up to 2.4 GeV. The energy should change continuosly from 1GeV to the maximum energy

Road map:Conceptual Design Reports by the end of 2006 Construction 2007-2008-2009-2010

LoI's : KLOE2 exp AMADEUS exp DANTE exp DANAE acc They can be found at: www.lnf.infn.it