

Linac4 Project Forthcoming industrial orders

T. Kurtyka – LHC/DI (in collaboration with M. Vretenar – AB/RF)

- 1. Introduction, parameters
- 2. Project Planning
- 3. Linac4 R&D Collaborations
- 4. Forthcoming industrial orders

ILO Forum 16.09.2008

The present LHC Injector Chain

Present LHC Injectors

-Linac2 (p, 50 MeV, 1978) -PSB (1.4 GeV, 1972) -PS (28 GeV, 1959) -SPS (450 GeV, 1976)

Two concerns for the future:

- 1. The reliability of the LHC relies upon a relatively old accelerator chain.
- 2. To fully exploit the LHC potential we will need to upgrade the injectors.

▶ p (proton) → ion ▶ neutrons ▶ p (untiproton) → +→ proton/untiproton conversion ▶ neutrinos ▶ electron
LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron
AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine Device
LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

✦ At its June 2007 Meeting, the CERN Council has approved the "White Paper", first presented to the Council in October 2006.

The approved programme includes (2nd Theme, high priority programme to be achieved by 2011, in order to <u>eliminate concerns about reliability</u> and <u>remove technical bottlenecks</u> in the present injection line):

□ <u>construction</u> of Linac4 (160 MeV, H-).

□ <u>design</u> of the Superconducting Proton Linac (SPL).

 \Box <u>design</u> of a new PS (PS2).

Construction of Linac4 is approved as a high priority project, and started in January 2008. The present planning foresees that the 2013 PSB start-up will be with the Linac4 beam. White Paper budget will cover the period 2008-11 (4 years).

Linac4 is foreseen to operate in 3 different modes:

- 1. Injector to PSB (2013-2016?): 160 MeV, 2 Hz, 40 mA, 400 ms.
- 2. Injector to Low Power SPL (2016-2020?): 180 MeV, 1 Hz, 20 mA, 1.2 ms
- 3. Injector to High Power SPL (*if approved, >2020*): 180 MeV, 50 Hz, 40 mA, 400 ms

The present design takes into account these three different modes and the future connection to the SPL

The new injectors on the CERN site

1st stage: Linac4 + PSB + PS + SPS 2nd stage: Linac4 + SPL + PS2 + SPS

Pre-integration May – October 2007: definition of building dimensions and characteristics Tendering drawings preparation November 2007 – April 2008 Integration continuing, for small modifications before start of works.

Tunnel cross-section

- Project Leader: Maurizio Vretenar AB/RF
- Technical information about the Project:
 - Linac4 web site: <u>http://linac4.web.cern.ch/linac4/</u> (accessible from the CERN web page)
 - LINAC4 Machine Review Committee January 2008 (see Linac4 web site).
 - "Linac4 Technical Design Report", CERN-AB-2006-084 ABP/ RF (but some changes in the design since then!)

Linac4 Master Plan

Linac4 Project-T.Kurtyka 11

Linac4 Project-T.Kurtyka 12

- Technologies and know-how of the main accelerating Linac4 structures and the RF equipment only available in specialized physics Institutes, and -without essential R&D investments- rarely in the industry,
- Final design of the main Linac4 elements has been therefore preceded by extensive R&D Collaboration with Member and Non-Member States laboratories (2004-2008) which will contribute to the production of certain elements,
- Several critical accelerating elements will be produced by CERN.

- Precision machining of steel and copper (0.02 0.1);
- Electron Beam Welding (EBM), brazing, copper plating of steel:
- Radio-frequency components for high peak power and low average power;
- Conventional electro-magnets of small dimensions and high precision;
- Permanent Magnet Quadrupoles (PMQ);
- High Voltage (100 120 kV) pulse transformers and switches.

Linac4 accelerating structures

Linac4 accelerates H- ions up to 160 MeV energy:

□ in about 80 m length

ILO

Forum 16.09.2008

□ using 4 different accelerating structures, all at 352 MHz

□ the Radio-Frequency power is produced by 19 klystrons

□ focusing of the beam is provided by 111 Permanent Magnet Quadrupoles and 33 Electromagnetic Quadrupoles

H- IONS gth accelera 2 MHz ncy po lvstron	up ating wer s		PI	MS	CCDTL			
eam is rmaner es and a ladrupo	nt 33 bles		8	36m		3	8MeV line	~
RFQ	DTL	CCDTL	PIMS					
3	50	102	160	MeV				
252	250	250	252	NATT				

	N Q				
Output energy	3	50	102	160	MeV
Frequency	352	352	352	352	MHz
No. of resonators	1	3	7	12	
Gradient E ₀	-	3.2	2.8-3.9	4.0	MV/m
Max. field	1.95	1.6	1.7	1.8	Kilp.
RF power	0.5	4.7	6.4	11.9	MW
No. of klystrons	1	1+2	7	4+4	
Length	6	18.7	25.2	21.5	m

A 70 m long transfer line connects to the existing line Linac2 - PS Booster

Linac4 Project-T.Kurtyka 15

951	keV 3MeV		3MeV	50MeV	94MeV 160MeV
H-	↓ RFQC	HOPPER _	DTL		PIMS
RF volume source (DESY) 35 kV Extrac. +60kV Postacc.	Radio Frequency Quadrupole (IPHI) 352 MHz 6 m 1 Klystron 1 MW	Chopper 352 MHz 3.6 m 11 EMquad 3 cavities	Drift Tube Linac 352 MHz 18.7 m 3 tanks 3 klystrons 4 MW 111 PMQs	Cell-Coupled Drift Tube Linac 352 MHz 25 m 21 tanks 7 klystrons 6.5 MW 21 EMQuads	Pi-Mode Structure 352 MHz 22 m 12 tanks 8 klystrons ~12 MW 12 EMQuads

Total Linac4: 80 m, 18 klystrons

Ion current: 40 mA (avg. in pulse), 65 mA (bunch) 4 different acc. Structures: RFQ, DTL, CCDTL, PIMS

Network of collaborations for the R&D phase, via EU-FP6, CERN-CEA/IN2P3, ISTC (CERN -Russia), CERN-India and CERN-Pakistan agreements.

Support by EU – FP6: HIPPI JRA within CARE (Coordinated Accelerator Research in Europe)

International participations to the construction of Linac4 to be defined during 2008 (Russia, France, Poland, India, Pakistan, Saudi Arabia, Spain, USA....) Linac4 Project-T.Kurtyka 17

The Linac4 accelerating structures

• A. Accelerating structures

Description	Parameters, technologies, number of units	Estimated cost range MCHF	Remarks
Drift Tube Linac (DTL) - tanks	Ф500, L~1.5 m 11 units	≈ 0.2	
Drift Tube Linac (DTL) – drift tubes	Copper, EBW ?, 120 units	0.4 – 0.6	
RF Windows	1 MW peak, 24 units	0.7 - 1.3	

B. RF equipment

Description	Parameters, technologies, number of units	Estimated cost range MCHF	Remarks
Klystrons	2.6 MW peak,7 units	3.5 - 4.0	One European producer only?
Loads	Ferrite or water absorbing medium, 19 units	0.8 – 1.2	One European producer only?
Amplifiers	30 kW peak, 3 units	0.5	

• C. Power converters

Description	Parameters, technologies, number of units	Estimated cost range MCHF	Remarks
HV pulse transformers	120 kV, 13 units	1.0 – 2.0	MS done, but no interest from European companies
HV switches	120 kV, 13 units	1.0	
Power converters	Various types (5-10 different?), 100 units	2.0 - 2.5	

D. Magnets

Description	Parameters, technologies, number of units	Estimated cost range MCHF	Remarks
PMQ (Permanent Magnet Quadrupoles)	High gradient (100 T/m), 120 units	0.35 – 0.45	No European producer
Conventional quadrupoles	Electromagnets, 60 units	0.5 – 0.7	
Bending magnets	Electromagnets, 7 units	0.4 – 0.6	

• E. Other equipment

Description	Parameters, technologies number of units	Estimated cost range MCHF	Remarks
Programmable Logic Controllers (PLC)		0.2	
Vacuum pumps	Two or three different types	0.4 - 0.6	

- A detailed schedule of the industrial tenders for Linac4 is in preparation,
- The tendering document forms and accompanying technical and commercial documents are now being reviewed to update them and adjust to the new stage of the LHC.