Zgamma Xsection measurement: D0 method tried in ATLAS inclusive test

Minghui 10-10-2008

Cross-section measurement

$$N_{sig} - N_{bgd} = \epsilon_{ll\gamma} \sigma \int Ldt$$

Nsig is what we observed in data

The key point is to figure out Nbgd

• Method Inclusive Test

samples

- Zgamma: 005899 Z to e, μ, τ 98.5K
- Zjet: 006904 Z to ee 123.3K
- 006905 Z to μ μ

Selection cuts

- e:
- pt>20GeV
- | n |<2.5
- author=1 ||3
- Isolation: Etcone20<6GeV
- isEM : Medium

Selection cuts

- µ:
- Pt>20GeV,
- | η |<2.5
- author=1
- Isolation: Etcone20<6*GeV
- x 2/ndof < 4

Selection cuts

- y
- Pt>10GeV,
- | η |<3
- Isolation: Etcone20<6*GeV
- No track match
- isEM: & 0x3FFF ==0
- IIr>0
- Number of track in 0.3 cone < 2

Event selection

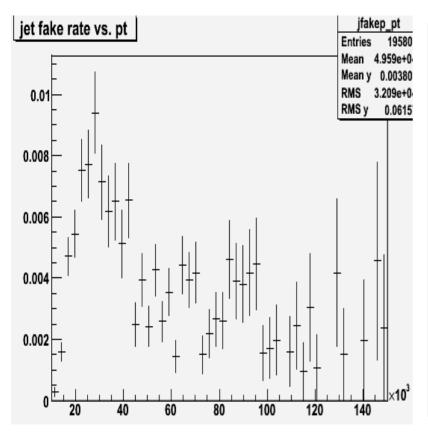
- Exactly 2e or 2 µ with opposite charge
- Exactly 1 γ
- ETMiss<20GeV
- 50GeV<MZ<130GeV
- $dR(l\pm, y)>0.7$

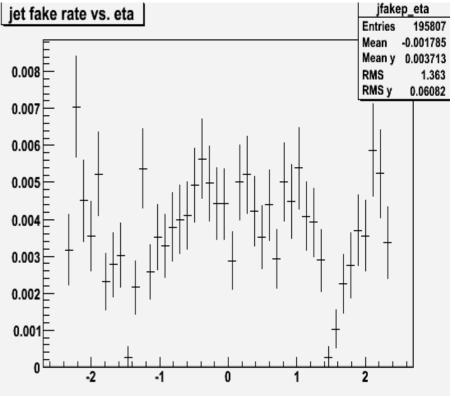
Selection results

Cut flow

Cut	X-section	Exactly 2e or 2μ (+,-)	Exactly 1 gamma	E _T Miss<20 GeV	dR(l±, γ) >0.7	50GeV <m<sub>Z <130GeV</m<sub>	Normalized to 1 fb-1
Z(e,μ,τ)+γ (98500)	15.94pb	18973	9354	8478	7681	7392	1196
Z(ee)jet (123250)	140.6pb	33837	285	189	124	106	121
Z(μμ)jet (123750)	140.6pb	45390	349	289	175	152	173

Inclusive test

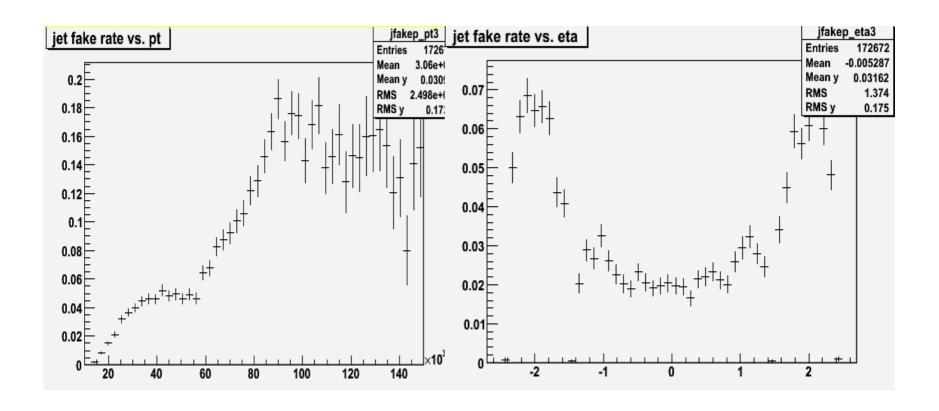

- Re:14.1.0
- Sample : Zjet: 006904 Z to ee
- 123.3K
- The first step is to get fake rate


Fake rate Using MC truth information:

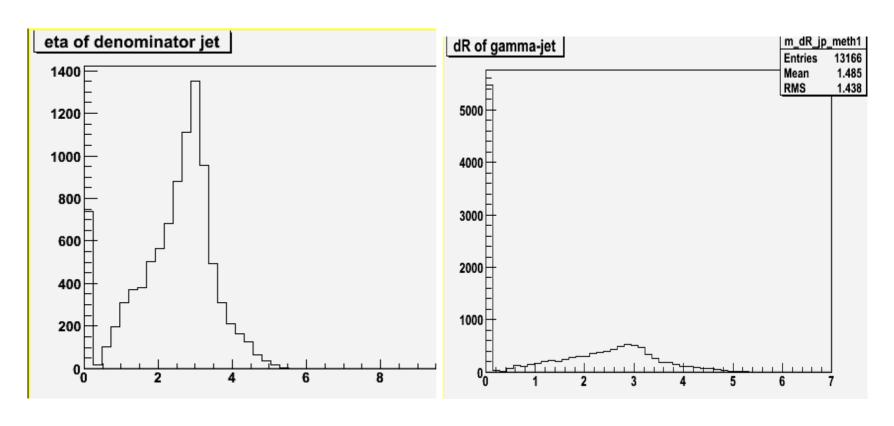
Jet Selection:

- 1.Get MC jet with dR(mcjet,mcelectron)>0.1;
- 2.For such a MC jet, find the corresponding recon jet by dR(mcj,rej)<0.2 and 0.5<dpt<1.5. (if more than 1 reco jet find, get the one with closest pt)
- 3.For the chosen reco jet, try to find a photon(pass photon ID, and not fake from e) with dR(recj,photon)<0.2
- 4. Fill the ratio as fake rate

Fake rate

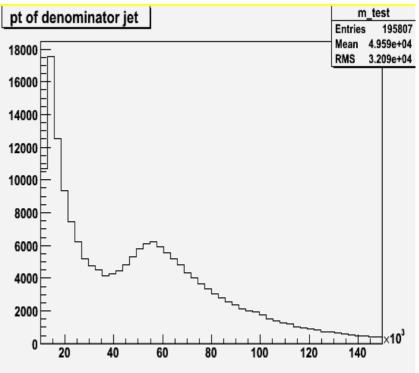


Fake rate without MC truth information:


Jet Selection:

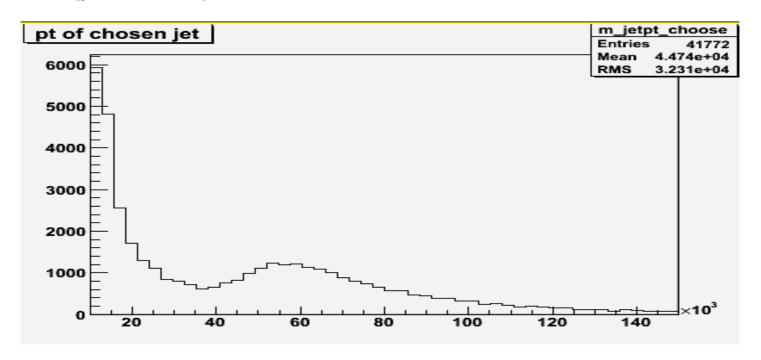
- 1. For a reco jet, match with all electron candidate, keep these with dR(rej,ele)>0.7
 - 2 .For the chosen reco jet, try to find a photon(pass photon ID, and not fake from e) with dR(recj,photon)<0.2
- 3. Fill the ratio as fake rate

Fake rate



Why so different?

Method 1 method2



method2

method1

Inclusive test

- Event have Z
- Jet pt>10GeV, |eta|<2.5
- dR(jet,e+-)>0.7

Inclusive test

- Result:
- 135+- 29