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ATLAS detector

• Huge multi-purpose detector; 46 m long; diameter 22 m; weight 7000 t

• Tracking system much smaller; 7 m long; diameter 2.3 m; 2 T field
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The ATLAS cavern

• Huge multi-purpose detector; 46 m long; diameter 22 m; weight 7000 t

• Toroid magnets and muon detectors dominate size

• Note that the lower part of the detector is not visible in the picture
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Why tracking at LHC is tough ?
• Too many particles in too short a time

- 1000 particles / bunch collision
- too short: collisions every 25 ns

• Too short need fast detectors and electronics; power! 

• Too many particles 
- need high resolution detectors with millions of channels     
- detectors suffer from radiation damage

to date this requires silicon detectors
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Extreme radiation levels !
• Radiation levels vary from  1 to 50 MRad in tracker volume

- less radiation at larger radii; more close to beam pipe
- more radiation in forward regions

• Fluences vary from to  1013  to 1015 particles/cm2

• Vicious circle: need silicon sensors for resolution and radiation 
hardness cooling (sensors and electronics) more material even 
more secondary particles etc.  

Don’t win a beauty contest in this environment, but 
detectors are still very good !  
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Extreme radiation levels !
Plots show radiation dose and fluence per high luminosity LHC year for 

ATLAS (assuming 107 s of collisions; source: ATL-Gen-2005-001)

Fluence [1 MeV eq. neutrons/cm2]            Radiation dose [Gray/year]

“Uniform thermal neutron gas” Put your cell phone into ATLAS !
It stops working after 1 s to 1 min.

• Neutrons are everywhere and cannot easily be suppressed
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The Boring masks the Interesting
H→ZZ → μμee + minimum bias events (MH= 300 GeV) 

LHC in 2008 ??  : 1032 cm-2s-1 LHC first years: 1033 cm-2s-1

LHC: 1034 cm-2s-1 SLHC: 1035 cm-2s-1
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ATLAS Tracker Strategy
• High-resolution silicon pixel detector near beam pipe to 

detect event vertices
– many channels; many chips; much power; cooling; etc. 

• Cannot do this at all radii: 
– too much passive material 
– too expensive

• Silicon strip detector (SCT) at medium radii 
– still high resolution, but less material and “cheaper”

• No money left at outer radii; build gas detector (TRT)
– don’t need ultimate resolution; less tracks/area
– use transition radiation threshold for e/π separation
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How does tracker look like ?

• the beast is still big; 7 m long
• barrels and discs; transition near η = 1
• routing  of cables and cooling tubes is 

important (but not emphasis of this talk)

TRT
r=55-105 cm

SCT
r=25-50 cm

Pixels
r=5-25 cm

Barrel Endcap

45° η = 1 η = 1.5

η = 2.5

η = 2

z = 0; interaction 
point
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How does it look in real life ? Pixel detector
• 3 barrel layers at 5, 9, 12 cm radius and 3 discs (each end) 

• 1.8 m2 of silicon; 80 M pixels; typical power consumption 7 kW 
• Pixel support structure: sophisticated carbon composite design
• Bi-stave: 2x13 modules; stave length: ≈80 cm



11

How does it look in real life ? Pixel detector
• Pixel module: composed of sensor; readout-chip; flex hybrid; cable
• module size: 16.4 mm x 60.8 mm; 46K channels per module; pixel 

size: 50 x 400 μm2

• very dense packaging; 10% R.L. at normal incidence (all layers, including  
support and services)
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Technological challenges: Pixel detector
Pioneering project: first pixel detector in hadron colliders

• Sensors: n+ on n-bulk, oxygenated silicon; max. voltage 700 V; 
multi-guard ring structure; operates up to 
1015 1-MeV neq/cm2; total input 
capacitance: <400 fF; signal after 
irradiation: > 10Ke-

• Readout chip: complex; fast; low-noise (<400 e-); radiation-hard to 
≈50 MRad; sensitive to small signals (6K e- ); 3.5 M transistors in 80 
mm2; 0.25 m CMOS process; 2880 pixels/chip; various attractive 
novel features
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Technological challenges: Pixel detector

• Bump-bonding of chips to sensors:
pitch of only 50 μm (commercial pitches ≈200 μm) 
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Technological challenges: Pixel detector
• innovative packaging of sensor/chips/support structure/cooling

- sophisticated, crowded flex-hybrid
- carbon-carbon support structures
- bump-bonding of chips to sensors
- direct cooling of chips 

• Global and local support structures: stiff; lightweight; precise; 
“zero” thermal expansion
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How does it look in real life ? SCT Detector
• 4 barrel layers at 30, 37, 45, 52 cm radius and 9 discs (each end) 

• 60 m2 of silicon; 6 M strips; typical power consumption ≈50 kW 
• Precision carbon fiber support cylinder carries modules, cables, optical 
fiber, and cooling tubes
• Evaporative cooling system based on C3F8  (same for pixel detector)

Barrel 6 at CERN
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Technological challenges: SCT detector

• big challenge to develop radiation-hard sensors and chips
but less severe than for pixels

detector area is two orders of magnitude bigger than other 
systems, however

• precise modules and support structures
• mass production, logistics and testing of 4000 modules 

and much more their sensors, hybrids, and chips in world-
wide collaboration

• System design and assembly of macrostructures
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Technological challenges: SCT detector
• large number of modules to be mounted on crowded cylindrical 

carbon fiber structure very successful use of robot
• Clearance between adjacent rows is 1 mm

Empty spot for last module on Barrel 3   (Oxford) The robot in action
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Technological challenges: SCT detector
• Only 1 module type for barrel detector; got hybrids, sensors, 

and modules right; ABCD chip design excellent, but had to 
overcome severe yield problems 

• Mechanical precision of key module parameters better than 
5 μm (to simplify alignment); required extensive metrology 

Same hybrid 
serves module 
top and bottom 
sensors

Typical module 
metrology results
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How does it look in real life ? TRT
• One barrel and 3 end caps (initially 2) at each end; up to 36 hits
• 4 mm diameter straw tubes, 30 μm W/Au wires; 420 K channels
• signal is due to both charged particles ionization and transition 
radiation photon absorption; 2 adjustable thresholds, low one for drift 
time determination, high one for TR photon 
• gas mixture: Xe(70%)/ CO2(27%)/O2(3%); gas gain 2.5 K; 
• positioning of wires precise to ≈ 20 μm        TRT barrel at CERN SR building

C-fiber shell
RadiatorStraws

Tension plate

HV 
connector
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Technological challenges: TRT
• Scale of detector
• Radiation-hardness/ LHC rates
• Gas composition/radiator

High threshold hitsTRT endcaps at CERN SR building

Particle ID with the TRT
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ATLAS Tracker 
Status 
Huge progress everywhere  

Example SCT barrel 
assembly at CERN

Heavy tooling for insertion of Barrel 6 
into mechanical/thermal and electrical 
shield (Thermal enclosure)

Last barrel (B4) is inserted into 
Thermal enclosure and the 3 
outer barrels
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TRT cosmic ray events

Taking cosmics since July 2005 with 3% of detector; beautiful 
events; excellent training ground; debugging and developing aid 
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ATLAS Tracker Status 
After so many years of struggle, overall picture is very 

encouraging! 
SCT: barrel detectors are at CERN and almost completed; 

endcap detectors to be shipped to CERN early 2006;

TRT: detector at CERN and essentially finished
Pixel:  module production 60% done; disc and stave population  

advanced 

Installation underground:  SCT and TRT barrel: 1/3/06; SCT and 
TRT end caps: 25/5/2006 and 30/6/2006; Pixels: 5/10/2006

Expect the ATLAS tracker to be ready for first data 
taking in summer 2007
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If it all works, what will it do for us ?
Tracker performance

Inverse transverse momentum resolution (1/pT) based on latest simulation 
(Geant 4) and reconstruction software

• Increased resolution for all η average reflects increase of material at large η
• performance exceeds expectation of Technical Design Report
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If it all works, what will it do for 
us ? Tracker performance

Transverse momentum resolution (d0) based on latest simulation 
(Geant 4) and reconstruction software; curves are not a fit but an earlier simulation

• Asymptotic resolution is close to 10 μm
• at lower momenta, resolution depends on η and increases with η

PT(GeV)
η ≈ 0

η <2.5
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ATLAS tracker for SLHC
• Super LHC (SLHC): upgrade of accelerator to deliver 

10-fold increase of luminosity by ≈2015
• Why is SLHC so attractive ?  Rationale:

- must fully exploit discovery potential of LHC (increased mass 
reach, precision, new and rare channels, the  unknown !)

- Tevatron experience shows that hadron  colliders at energy  
frontier can be competitive for 20 years 

- time to decrease stat. errors becomes too long; upgrade is more
efficient

• LHC tracking detectors are designed for ≈8 years lifetime
(would not have known how to do it better !)

Inner tracker must be replaced
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ATLAS SLHC Tracker 
• Most urgent priority is finishing current tracker !
• First SLHC initiatives have emerged, however 

- 2 US, 1 UK, 2 ATLAS SLHC work shops 
- generic R&D projects
- thinking and understanding !

• SLHC tracker specifications are simple:
1. Tracker must maintain LHC tracking  resolution/performance
2. Tracker must be 10 times more radiation hard
3. Must cope with 5 or 10 times more particles per bunch crossing

(depending on bunch distance, which will not be known too soon)

Have learnt enormously from the LHC tracker R&D 
Believe, but don’t know yet, that this can be done ! 
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An ATLAS SLHC Tracker could look like this

• all silicon: rates too high for TRT
• 3 different radial regions with different detector types

- innermost: 3-4 pixel layers
- medium radius (current SCT): 3-4 short strip layers
- outermost (current SCT): 2-4 long strip layers 

Plot courtesy David Lissauer 
(BNL)
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Main challenges: power and material budget
• Power consumption

SCT alone requires ≈50 kW of power, half of it wasted in cables; power 
consumption scales with channel number naively get 10 times more power ! 

• Space for cables
power cables are bulky; no space for more than the current number of cables

• Cooling system
Effective cooling of electronics; increased radiation and leakage current require 
sensors temperatures below the current -7°C; no space for new cooling pipes

• Hybrid material
More channels more hybrids more material poorer resolution

Innovation needed in all these area
Other challenges radiation-hard silicon and power efficient chips
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A look at material issues

• naively extrapolating from an SCT to an SLHC layer assuming 5 times 
more channels, we get (one layer, barrel, normal impact):

Material budget will explode at SLHC without innovations in 
powering, packaging, and cooling

5 %2 %Total

1 %x 50.2 %Cable

12 %30 %Silicon fraction

1.7 %x ≈3; x 1; x 
1

0.4; 0.3;
0.2 % 

Cooling; CF cylinders; 
module baseboard; etc.

0.6 %x 10.6 %Sensor

1.5 %x 50.3 %Hybrid

R.L. for 
SLHC

Scaling 
factor*

R.L. for 
SCT

Component

too 
big !

*crude estimate; no 
innovation
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Selected R&D initiatives
• Serial powering of modules
pioneered by Bonn group for 
ATLAS Pixels see T. Stockmanns et al., 
Instr. and Meth. A 511, 174-179 (2003)

Much less cables and higher power efficiency

• Radiation-hard n-on-p strip sensors

• 3-d pixel (Sherwood Parker) 
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Selected R&D initiatives
• “Revival” of staves or supermodule concept

Idea for a medium radius stave with 
short strips (courtesy Phil Allport)

CDF Run IIb stave as starting point 
for outer layer stave at SLHC
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Summary

• Tracking at LHC is tough, but immensely important 
for physics

• Scale of detectors and technological challenge are huge
• After more than a decade of R&D and years of mass 

production, the final devices are taking shape

• Large fraction of ATLAS tracker available
• Shift from module production, to assembly and 

integration
• Will go underground next year and expect ATLAS 

tracker to be available in time for data taking
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Appendix
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Pixel sensor
• High bias voltage due to:

- oxygenation
- multi-guard ring structure

• For unirradiated sensors depletion begins at the back side (n-p junction); n+ pixels are 
only isolated when the bulk is fully depleted

• After irradiation and n to p type conversion; depletion starts from top side, and
pixels are separated even when not fully depleted
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SLHC Physics Motivation
• Extend LHC discovery mass reach by ≈ 30%

- increased reach for squark and gluino by ≈500 GeV to 3 TeV
- increased reach for add. heavy gauge bosons from ≈5.3 to 6.5 TeV
- extended sensitivity (100 GeV) to heavy MSSM Higgses (important 
for distinction of MSSM and SM)

- increased quark compositeness limit (indirect) from 40 to 60 TeV

• Increased precision in SM and Higgs physics
- triple gauge boson and Higgs couplings improved by ≈ 2

• Increased sensitivity to rare processes/decays
- FNC top decays: e.g. limit for t->qZ increased from 1.1 to 0.1 x 10-5

- some sensitivity to Higgs self-coupling in gg->HH channel (hopeless at LHC !)
- some sensitivity to strongly coupled vector boson systems, if no Higgs (hopeless 
at LHC!)


