New Frontiers in Subnuclear Physics, Milano, Sep. 2005

GLOBAL DETERMINATION OF MIXING PARAMETERS FROM SOLAR AND REACTOR NEUTRINOS AND FUTURE PERSPECTIVES

- P. Aliani^a, **V. Antonelli**^{b,c}, R. Ferrari^{b,c},
- M. Picariello b,c , E. Torrente-Lujan d
- (a) Université Libre de Bruxelles, Bruxelles (Belgium)
- (b) Dipartimento di Fisica, Università di Milano
- (c) INFN, Sezione di Milano
- (d) Universidad de Murcia (Spain) and CERN Theory Division

Contents

- Solar and reactor ν played a central role in neutrino physics. Proof that ν are massive and oscillating particles, but still important open questions: exact mixing parameters determination; detailed spectrum analysis; study of the low part of the spectrum.
- The "Solar Neutrino Problem"
 - Pre and post-SNO situation
- The reactor neutrinos
 - KamLAND
- Our analysis:
 - Mixing models
 - Phenomenological study: numerical codes and statistical analysis
- Mixing parameters determination (masses and angles)
- Possible future scenarios
- Comments and conclusions

Solar ν Experiments

- 1st indication of deficit in solar ν reaching the detector from radiochemical experiments:
 Homestake (since the '70s; β decay by ³⁷Cl) and SAGE, Gallex/GNO (Ga instead of Cl)
- From end '90th confirmation by Kamiokande and SK $\nu_e e^-$ elastic scattering in H₂O (sensitive only to ν from ⁸B ed hep)
- SNO. D₂O Cherenkov detector. Simultaneous observation of: (CC: $\nu_e + d \rightarrow e^- + p + p$), (NC: $\nu_x + d \rightarrow \nu_x + n + p$) and (ES: $\nu_x + e^- \rightarrow \nu_x + e^-$).
 - 2001: 1st data from SNO (CC e ES)
 - 2002-2005: New data from SNO (including NC). Salt addition: improvement of NC detection efficiency. ⇒ 1st direct measurement of ⁸B solar ν flux. Confirmation of SSM validity; proof of oscillation hypothesis and mixing parameters determination

Reactor neutrino experiments

• Well known E and baselines. In a 2 flavor analysis the survival probability for ν ($\bar{\nu}$) of fixed flavor is:

$$P_{ii} = 1 - \sin^2(2\theta)\sin^2\left(\frac{1.27 \Delta m^2(eV^2) L(Km)}{E(GeV)}\right)$$

• Previous reactor experiments CHOOZ and Palo Verde short and medium baselines $(L \simeq 1Km)$ and E of a few MeV: couldn't access mass differences smaller than $10^{-3}eV^2$. No indications of $\bar{\nu}_e$ disappearance. \Rightarrow limitations on the mixing parameters. Upper limit for θ_{13} : \Rightarrow Double CHOOZ; future generation experiments.

KamLAND

- Reactor $\bar{\nu}$ exp. with medium energy and baseline. $E \geq 1.8 MeV$; baseline $\simeq 139 214 Km$. Expected $\simeq 550$ events/year. Able to test most of LMA.
- Balloon with liquid scintillator, contained with a spherical vessel and surrounded by photomult.
- $\bar{\nu}$ detected via $(\bar{\nu}_e + p \rightarrow e^+ + n)$. Time and position coincidence between e^+ signal and the one of neutron capture $(n+p \rightarrow d + \gamma(2.2 MeV))$.

KamLAND (KL) results

- December 2002: First data published
- Summer 2004:Updated data with increased statistics. 515 days of total live time. Ratio observed/(expected no oscillation) events $R = 0.658 \pm 0.044(stat) \pm 0.047(syst)$.

Spectrum distortion (at low frequencies) found at 99.6% C.L. \rightarrow The "No oscillation models" are strongly disfavoured.

Best fit: $(tan^2\theta, \Delta m^2) = (0.46, 7.9 \times 10^{-5} eV^2)$. Future: reducing systematics and increasing statistics KL may improve Δm^2 determination with a factor 2, but the angle discrimination could at most be comparable with the solar one.

- 2005: First detection of geoneutrinos
- Planned ${}^{7}Be$ solar ν detection. Needed further purification for ${}^{85}Kr$ and ${}^{210}Bi/{}^{210}Po$.

Our Analysis

(NPB 634 (2002) 393; PRD 67 (2003) 013006; New J. Phys. 5 (2003) 2; PLB 549 (2002) 325; JHEP 02 (2003) 025; AIP Conf. Proc. 655 (2003) 103; PRD 69 (2004) 013005; hep-ph/0309156; cs.ce/0307053; hep-ph/0406182; NPB (Proc. Suppl.) 143 (2005) 4833)

- Study of all solar ν and KamLAND data.
- Main aim: -Determine oscillation mixing parameters and potentialities of running and forthcoming experiments.

Main results: pre and post-SNO mixing parameters determination; predictions for BOREXINO; Study of KL potentialities; analysis of the data of different SNO and KL phases.

• Strategy:

- $-\nu$ oscillation hypothesis
- -matter interaction effects for solar ν
- -comparison between the experimental results and the expected signal computed as a function of the mixing parameters
- -statistical analysis with χ^2 method.

Statistical and numerical analysis

- Determination of ν_e transition probability
- Response functions for each detector (efficiency, resolution, cross-sections).
- Ratio between the computed signal and the one predicted by SSM in absence of oscillation. $R_i^{th} = S_i^{th}/S_i^{SSM}$, i=Cl, Ga, SK, SNO
- Comparison with exp. ratio and χ^2 analysis
- Determination of χ^2_{min} and search for the mixing parameters satisfying the requirement: $\Delta\chi^2 = \chi^2(\Delta m^2, \theta) \chi^2_{min} < \chi^2_n(C.L.)$ These are the values allowed at a certain confidence level
- Production of exclusion plots.

A bit of history

The 2001 situation (lower picture): including all radiochemical and SNO CC global signals and SK energy spectrum before 2002. Colored areas allowed at

90%,95%,99% and 99.7% C.L. .

After 1st SNO-NC data (upper picture): LMA favored. Minimum: $\Delta m^2 = 5.44 \times 10^{-5} \text{ eV}^2$; $\tan^2 \theta = 0.40$.

Post KamLAND situation

• KamLAND(KL) confirmed the LMA solution of SNP. Combination of first KL and of Solar ν data selected 2 distinct regions inside the LMA:

LMA-I (our values $\Delta m^2 = 7.1 \times 10^{-5} eV^2$; $tan^2(\theta) = 0.47$) and LMA-II

• After new analysis of SK data and mainly new KL and SNO salt data: LMA-II excluded at $\geq 99.9\%$ C.L. and maximal mixing excluded at about 5 σ . SNO salt result: flux ratio CC/NC = 0.340 ± 0.023 (stat) $^{+0.029}_{-0.031}$ (syst).

Combining KL and solar ν data:

$$(tan^2\theta, \Delta m^2) = (0.45^{+0.09}_{-0.07}, 8.0^{+0.6}_{-0.4} \times 10^{-5} eV^2).$$

Future perspectives

- Up to now and in near future solar and reactor ν only way to determine Δm_{12}^2 and θ_{12} . Precise determination: important hints also for future ν factories, superbeams and beta-beams.
- Solar and reactor ν exp. still running: SAGE, SK, SNO:
 - SK detector should be reconstructed (and performance fully recovered) by 2006. Lower E threshold should go down to $\simeq 4$ MeV. Precise measurement of 8B spectrum and eventual effects of non-zero θ_{13} mixing.
 - SNO: In its 3rd phase 3He prop. counters for NC measurements \rightarrow detailed study of 8B and hep spectra.
- Up to now cristal clear evidence of oscillation but no clear signal of spectrum distortion and day-night asimmetry by SK and SNO. Important also future Mega-ton class cherenkov detector.
- Solar ν spectrum measured only above 5 MeV so far: E spectrum of more than 99% of solar ν not measured yet. pp and ⁷Be solar ν measurements

essential for the mixing parameters determination. Useful also CNO ν measurements (test of stellar evolution models)

- New solar ν experiments:
 - -LENS and MOON (CC exp.)
 - -BOREXINO and KamLAND plan to measure $^7\mathrm{Be}~\nu$
 - other $\nu-e$ scattering experiments: XMASS, HERON, CLEAN
 - -idea of replacing heavy water by liquid scintillator at SNO to measure pep and CNO ν

Conclusions

- Solar and reactor ν experiments important in the past, mainly in the last 4-5 years, and still relevant today, both for θ_{12} and Δm_{12}^2 determination and for potentialities of other experiments.
- Solar neutrino problem history and recent SK and SNO data. KamLand data.
- Analysis of our gorup: aims, results and strategy. Global analysis of all solar and reactor ν experiments in their different phases and study of their potentialities.
- Evolution of the mixing parameters determination in the last years and discussion of the present situation.
- Future scenarios. Precision neutrino 'spectroscopy'. Search for signals of spectral distortion and day-nighyt asimmetry. Study of low energy part of solar neutrino spectrum.