Tests of the ATLAS Trigger and Data Acquisition System

G. Lehmann Miotto, CERN-PH/ATD on behalf of the ATLAS TDAQ Group

Outline

- Overview of system requirements
- The ATLAS TDAQ architecture
- Performance and stability challenges
- Tests on a large general purpose computer cluster
- Tests on purpose build setup
- Conclusions

Physics and Detector

- No. overlapping events/25 ns 23
- No. particles in ATLAS/25 ns 1400
- Data throughput at detectors (40 MHz) **PB**/s (equivalent to)

얽얽얽

G. Lehmann Miotto, CERN-PH/ATD

Requirements to TDAQ

- Reduce the amount of data which have to be recorded for offline analysis substantially (4x10⁵),
 - without dropping interesting physics signals,
 - nor losing the complete detector information,
 - with minimal spending.

4

Region of Interest - Why?

The Level-1 selection is dominated by local signatures

- Based on coarse granularity (calo, mu trig chamb), w/out access to inner tracking
- Important further rejection can be gained with local analysis of full detector data
- The geographical addresses of interesting signatures identified by the LVL1 (Regions of Interest)
 - Allow access to local data of each relevant detector
 - Sequentially
- Typically, there is 1-2 Rol per event accepted by LVL1
 - <Rols/ev> = ~1.6
- The resulting total amount of Rol data is minimal
 - a few % of the Level-1 throughput

FrontierScience 2005

Rol mechanism - Implementation

- There is a simple correspondence η- φ region <-> read-out buffer(s) containing the data
- This mechanism provides a powerful and economic way to add an important rejection factor (> 30) before full Event Building

Note that this example is atypical; the average number of Rols/ev is ~1.6

윍윍윍

ATLAS Trigger / DAQ DataFlow

UX15

FrontierScience 2005

ATLAS Trigger / DAQ Data Flow

ATLAS Trigger / DAQ Data Flow

The TDAQ Challenges

Control and Configuration of a huge distributed and inhomogeneous computing system

• Test software on largest possible computing clusters.

• Performance and scaling of the data flow elements

• Reproduce the ATLAS flow of data on a reduced scale using realistic elements (both computers and networks) in a dedicated laboratory.

The 2005 Large Scale Tests

- Use of the CERN/IT Ixshare cluster (up to 700 nodes) for 6 weeks
- Scope: measure performance of Run Control, Configuration DB, operational monitoring, etc...

Data Flow Performance on Dedicated HW

- Use of ATLAS TDAQ test bed at CERN/Bdg-32
- Purpose: verify that critical components deliver the requested performance and scale

3 read-out buffers on 1 PCI card (4 such cards per ROS PC)

Milano, 12 September 2005September 12th 2005

G. Lehmann Miotto, CERN-PH/ATD

G. Lehmann Miotto, CERN-PH/ATD

The DAQ Performance

Conclusions

- The ATLAS Trigger and DAQ architecture is well established (a prototype implementation is already used for the commissioning of the detector)
- Focus is now moved to detailed testing and debugging of all hardware and software components
 - Large computer clusters have been successfully used to (im)prove the functioning of the control and configuration aspects of the TDAQ
 - A dedicated test bed has been setup to measure and optimize the performance of the critical data flow components
- Routine testing of the TDAQ has been proven to be essential to consolidate and optimize such a large software project

